login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270707
a(n) = (n+1)!*Sum_{k=0..(n-1)/2}(k!*stirling1(n-k,k+1)*(-1)^(n+1)/(n-k)!/(k+1)!).
1
0, 2, 3, 14, 60, 349, 2310, 17772, 154224, 1494168, 15973980, 186815386, 2372249880, 32503673760, 477955820160, 7507517217600, 125452772867520, 2222130456911520, 41587962405967872, 820019478835203840, 16990772582549183040
OFFSET
0,2
LINKS
FORMULA
E.g.f.: (log(1/(1-x))+x/(1-x))*(1/(1-x)^x-1)/(x*log(1/(1-x))).
a(n) ~ n! * n/log(n) * (1 + (1-gamma)/log(n) + (gamma^2 - 2*gamma + 2 - Pi^2/6)/log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 22 2016
MATHEMATICA
Table[(n+1)!*Sum[k!*StirlingS1[n-k, k+1]*(-1)^(n+1)/(n-k)!/(k+1)!, {k, 0, (n-1)/2}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 22 2016 *)
PROG
(Maxima)
makelist((n)!*coeff(taylor((log(1/(1-x))+x/(1-x))*(1/(1-x)^x-1)/(x*log(1/(1-x))), x, 0, 15), x, n), n, 0, 15);
a(n):=(n+1)!*sum((k)!*stirling1(n-k, k+1)*(-1)^(n+1)/(n-k)!/(k+1)!, k, 0, (n-1)/2);
(PARI) for(n=0, 20, print1((n+1)!*sum(k=0, (n-1)/2, k!*stirling(n-k, k+1, 1)*(-1)^(n+1)/(n-k)!/(k+1)!), ", ")) \\ G. C. Greubel, Sep 07 2018
CROSSREFS
Cf. A048994.
Sequence in context: A268559 A346057 A371608 * A141148 A275554 A346553
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 22 2016
STATUS
approved