login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = Sum_{n>=0} A000108(n)^2 * (x-x^2)^n, where A000108(n) = C(2*n,n)/(n+1) is the n-th Catalan number.
0

%I #11 Sep 16 2014 07:24:10

%S 1,1,3,17,125,1055,9755,96353,1000529,10805045,120429581,1377565711,

%T 16103628975,191753782563,2319792221739,28453553549889,

%U 353240252092329,4432432002187105,56149270333672577,717376886229388757,9236054560816552341,119742311958753198301,1562281609210280404333

%N G.f. satisfies: A(x) = Sum_{n>=0} A000108(n)^2 * (x-x^2)^n, where A000108(n) = C(2*n,n)/(n+1) is the n-th Catalan number.

%F G.f. A(x) satisfies: A(x*C(x)) = Sum_{n>=0} A000108(n)^2 * x^n, where C(x) = 1 + x*C(x)^2 is the Catalan function.

%F a(n) = Sum_{k=0..n} (-1)^k * C(n-k,k) * A000108(n-k)^2, where A000108(n) = C(2*n,n)/(n+1).

%F Recurrence: n*(n+1)^2*a(n) = n*(18*n^2 - 13*n + 5)*a(n-1) - (49*n^3 - 111*n^2 + 20*n + 72)*a(n-2) + 8*(6*n^3 - 22*n^2 + 8*n + 27)*a(n-3) - 16*(n-3)^2*(n+1)*a(n-4). - _Vaclav Kotesovec_, Sep 16 2014

%F a(n) ~ 12*(7-4*sqrt(3)) * (8+4*sqrt(3))^n / (Pi * n^3). - _Vaclav Kotesovec_, Sep 16 2014

%e G.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 125*x^4 + 1055*x^5 + 9755*x^6 +...

%e The g.f. A(x) = D(x-x^2) satisfies A(x*C(x)) = D(x), where

%e C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 +...+ A000108(n)*x^n +...

%e D(x) = 1 + x + 4*x^2 + 25*x^3 + 196*x^4 + 1764*x^5 + 17424*x^6 + 184041*x^7 + 2044900*x^8 + 23639044*x^9 +...+ A000108(n)^2*x^n +...

%e The squares of the Catalan numbers can be generated from this sequence by using the following summation rule.

%e Drop the first term, take partial sums, and repeat, like so:

%e 1, 1, 3, 17, 125, 1055, 9755, 96353, 1000529, 10805045, ...;

%e .. 1, 4, 21, 146, 1201, 10956, 107309, 1107838, 11912883, ...;

%e ..... 4, 25, 171, 1372, 12328, 119637, 1227475, 13140358, ...;

%e ........ 25, 196, 1568, 13896, 133533, 1361008, 14501366, ...;

%e ............ 196, 1764, 15660, 149193, 1510201, 16011567, ...;

%e ................. 1764, 17424, 166617, 1676818, 17688385, ...;

%e ....................... 17424, 184041, 1860859, 19549244, ...;

%e .............................. 184041, 2044900, 21594144, ...; ...

%t Table[Sum[(-1)^k * Binomial[n-k, k] * Binomial[2*(n-k), n-k]^2 / (n-k+1)^2,{k,0,Floor[n/2]}],{n,0,20}] (* _Vaclav Kotesovec_, Sep 16 2014 *)

%o (PARI) {a(n)=local(A=1);A=sum(m=0,n, binomial(2*m,m)^2/(m+1)^2 * (x-x^2 +x*O(x^n))^m);polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) {a(n)=sum(k=0,n\2,(-1)^k * binomial(n-k,k) * binomial(2*(n-k),n-k)^2/(n-k+1)^2)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A000108, A001246.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Sep 08 2014