login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247978
Number of permutations of [n] that have no prime fixed points.
2
1, 1, 1, 3, 14, 64, 426, 2790, 24024, 229080, 2399760, 25022880, 312273360, 3884393520, 56255149440, 869007242880, 14266826784000, 233845982899200, 4309095479673600, 79300508301907200, 1620482929875532800, 34699018357638835200, 777011144137311283200
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{j=0..pi(n)} (-1)^(j)*C(pi(n),j)*(n-j)!, with pi = A000720.
EXAMPLE
a(2) = 1: 21.
a(3) = 3: 132, 231, 312.
a(4) = 14: 1324, 1342, 1423, 2143, 2314, 2341, 2413, 3124, 3142, 3412, 3421, 4123, 4312, 4321.
MAPLE
with(numtheory):
a:= n-> add((-1)^(j)*binomial(pi(n), j)*(n-j)!, j=0..pi(n)):
seq(a(n), n=0..25);
MATHEMATICA
a[n_] := Sum[(-1)^j*Binomial[PrimePi[n], j]*(n-j)!, {j, 0, PrimePi[n]}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 26 2017, translated from Maple *)
PROG
(PARI) for(n=0, 25, print1(sum(j=0, primepi(n), (-1)^j*binomial(primepi(n), j)*(n - j)!), ", ")) \\ Indranil Ghosh, Mar 08 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 02 2014
STATUS
approved