login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187847
Number of permutations p of [n] with p(i) <> i^2.
2
1, 0, 1, 4, 14, 78, 504, 3720, 30960, 256320, 2656080, 30078720, 369774720, 4906137600, 69894316800, 1064341555200, 16190733081600, 279499828608000, 5100017213491200, 98087346669312000, 1983334021853184000, 42063950934061056000, 933754193111900160000
OFFSET
0,4
COMMENTS
Also number of permutations of [n] that have no square fixed points.
LINKS
FORMULA
a(n) = Sum_{j=0..floor(sqrt(n))} (-1)^j*C(floor(sqrt(n)),j)*(n-j)!.
EXAMPLE
a(3) = 4: (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).
MAPLE
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> `if`(j<>i^2, 1, 0)))):
seq(a(n), n=0..15);
# second Maple program:
a:= n->(p->add((-1)^(j)*binomial(p, j)*(n-j)!, j=0..p))(floor(sqrt(n))):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 02 2014
MATHEMATICA
a[n_] := With[{p = Floor[Sqrt[n]]}, Sum[(-1)^j*Binomial[p, j]*(n-j)!, {j, 0, p}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Jan 07 2016, adapted from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 11 2011
STATUS
approved