OFFSET
0,4
COMMENTS
Also number of permutations of [n] that have no square fixed points.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200
FORMULA
a(n) = Sum_{j=0..floor(sqrt(n))} (-1)^j*C(floor(sqrt(n)),j)*(n-j)!.
EXAMPLE
a(3) = 4: (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).
MAPLE
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> `if`(j<>i^2, 1, 0)))):
seq(a(n), n=0..15);
# second Maple program:
a:= n->(p->add((-1)^(j)*binomial(p, j)*(n-j)!, j=0..p))(floor(sqrt(n))):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 02 2014
MATHEMATICA
a[n_] := With[{p = Floor[Sqrt[n]]}, Sum[(-1)^j*Binomial[p, j]*(n-j)!, {j, 0, p}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Jan 07 2016, adapted from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 11 2011
STATUS
approved