login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355950
a(n) = Sum_{k=1..n} k^(k-1) * floor(n/k).
2
1, 4, 14, 81, 707, 8495, 126145, 2223364, 45270095, 1045270723, 26982695325, 769991073865, 24068076196347, 817782849568143, 30010708874959403, 1182932213483903598, 49844124089150772080, 2235755683827890358557, 106363105981739131891399
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} Sum_{d|k} d^(d-1).
G.f.: (1/(1-x)) * Sum_{k>0} k^(k-1) * x^k/(1 - x^k).
PROG
(PARI) a(n) = sum(k=1, n, n\k*k^(k-1));
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, d^(d-1)));
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k-1)*x^k/(1-x^k))/(1-x))
(Python)
def A355950(n): return n*(1+n**(n-2))+sum(k**(k-1)*(n//k) for k in range(2, n)) if n>1 else 1 # Chai Wah Wu, Jul 21 2022
CROSSREFS
Partial sums of A262843.
Sequence in context: A187847 A277039 A003707 * A063862 A222497 A327355
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 21 2022
STATUS
approved