login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} k^(k-1) * floor(n/k).
2

%I #16 Jul 22 2022 10:12:21

%S 1,4,14,81,707,8495,126145,2223364,45270095,1045270723,26982695325,

%T 769991073865,24068076196347,817782849568143,30010708874959403,

%U 1182932213483903598,49844124089150772080,2235755683827890358557,106363105981739131891399

%N a(n) = Sum_{k=1..n} k^(k-1) * floor(n/k).

%H Seiichi Manyama, <a href="/A355950/b355950.txt">Table of n, a(n) for n = 1..387</a>

%F a(n) = Sum_{k=1..n} Sum_{d|k} d^(d-1).

%F G.f.: (1/(1-x)) * Sum_{k>0} k^(k-1) * x^k/(1 - x^k).

%o (PARI) a(n) = sum(k=1, n, n\k*k^(k-1));

%o (PARI) a(n) = sum(k=1, n, sumdiv(k, d, d^(d-1)));

%o (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k-1)*x^k/(1-x^k))/(1-x))

%o (Python)

%o def A355950(n): return n*(1+n**(n-2))+sum(k**(k-1)*(n//k) for k in range(2,n)) if n>1 else 1 # _Chai Wah Wu_, Jul 21 2022

%Y Partial sums of A262843.

%Y Cf. A006218, A268235, A344814, A344815, A344816.

%Y Cf. A060946, A355887.

%K nonn

%O 1,2

%A _Seiichi Manyama_, Jul 21 2022