login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161132
Number of permutations of {1,2,...,n} that have no even fixed points.
6
1, 1, 1, 4, 14, 78, 426, 3216, 24024, 229080, 2170680, 25022880, 287250480, 3884393520, 52370755920, 812752093440, 12585067447680, 220448163358080, 3854801333416320, 75225258805132800, 1465957162768492800, 31537353006189676800, 677696237345719468800
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{j=0..ceiling(n/2)} d(n-j)*binomial(ceiling(n/2), j), where d(i) = A000166(i) are the derangement numbers.
a(n) = Sum_{j=0..floor(n/2)} (-1)^j*binomial(floor(n/2),j)*(n-j)!.
a(n) = A267383(n,ceiling(n/2)). - Alois P. Heinz, Jan 13 2016
a(n) ~ exp(-1/2) * n!. - Vaclav Kotesovec, Feb 18 2017
From Mark van Hoeij, Jul 15 2022: (Start)
a(2*n) = A033815(n),
a(2*n+1) = (A033815(n) + A033815(n+1)/(n+1))/2. (End)
From Peter Luschny, Jul 15 2022: (Start)
a(n) = n!*hypergeom([-floor(n/2)], [-n], -1).
a(n) = A068106(n, ceiling(n/2)). (End)
D-finite with recurrence +16*a(n) -24*a(n-1) +4*(-4*n^2+8*n+3)*a(n-2) +4*(2*n^2-10*n+9)*a(n-3) +2*(-4*n^2+22*n-31)*a(n-4) +2*(n-2)*(n-4)*a(n-5) -(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(3)=4 because we have 132, 312, 213, and 231.
MAPLE
d[0] := 1: for n to 25 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: add(d[n-j]*binomial(ceil((1/2)*n), j), j = 0 .. ceil((1/2)*n)) end proc: seq(a(n), n = 0 .. 22);
a := proc (n) options operator, arrow: add((-1)^j*binomial(floor((1/2)*n), j)*factorial(n-j), j = 0 .. floor((1/2)*n)) end proc; seq(a(n), n = 0 .. 22); # Emeric Deutsch, Jul 18 2009
a := n -> n!*hypergeom([-floor(n/2)], [-n], -1):
seq(simplify(a(n)), n = 0..22); # Peter Luschny, Jul 15 2022
MATHEMATICA
a[n_] := Sum[Subfactorial[n-j]*Binomial[Ceiling[n/2], j], {j, 0, Ceiling[ n/2]}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 19 2017 *)
PROG
(PARI)for (n=0, 30, print1(sum(j=0, floor(n/2), (-1)^j*binomial(floor(n/2), j)*(n - j)!), ", ")) \\ Indranil Ghosh, Mar 08 2017
(Python)
import math
f=math.factorial
def C(n, r): return f(n)/ f(r)/ f(n - r)
def A161132(n):
s=0
for j in range(0, (n/2)+1):
s += (-1)**j*C(n/2, j)*f(n - j)
return s # Indranil Ghosh, Mar 08 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 18 2009
STATUS
approved