login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161131
Number of permutations of {1,2,...,n} that have no odd fixed points.
6
1, 0, 1, 3, 14, 64, 426, 2790, 24024, 205056, 2170680, 22852200, 287250480, 3597143040, 52370755920, 760381337520, 12585067447680, 207863095910400, 3854801333416320, 71370457471716480, 1465957162768492800, 30071395843421184000, 677696237345719468800
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{j=0..floor(n/2)} d(n-j)*binomial(floor(n/2), j), where d(i)=A000166(i) are the derangement numbers.
a(n) = Sum_{j=0..ceiling(n/2)} (-1)^j*binomial(ceiling(n/2), j)*(n-j)!. - Emeric Deutsch, Jul 18 2009
a(n) ~ exp(-1/2) * n!. - Vaclav Kotesovec, Feb 18 2017
From Peter Luschny, Jul 15 2022: (Start)
a(n) = n!*hypergeom([-ceiling(n/2)], [-n], -1).
a(n) = A068106(n, floor(n/2)). (End)
D-finite with recurrence +16*a(n) -24*a(n-1) -4*(2*n-1)*(2*n-3)*a(n-2) +4*(2*n^2-10*n+15)*a(n-3) +2*(-10*n+29)*a(n-4) +2*(n-2)*(n-4)*a(n-5) +(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(3)=3 because we have 312, 231, and 321.
MAPLE
d[0] := 1: for n to 25 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: add(d[n-j]*binomial(floor((1/2)*n), j), j = 0 .. floor((1/2)*n)) end proc; seq(a(n), n = 0 .. 22);
a := proc (n) options operator, arrow: add((-1)^j*binomial(ceil((1/2)*n), j)*factorial(n-j), j = 0 .. ceil((1/2)*n)) end proc; seq(a(n), n = 0 .. 22); # Emeric Deutsch, Jul 18 2009
# next Maple program:
a:= proc(n) option remember; `if`(n<4, [1, 0, 1, 3][n+1],
(8*(n-1)*(2*n-5)*a(n-1)+2*(8*n^4-48*n^3+102*n^2-90*n+29)*a(n-2)
-2*(2*n-1)*(n-2)*a(n-3)+(2*n-1)*(2*n-3)*(n-2)*(n-3)*a(n-4))
/(4*(2*n-3)*(2*n-5)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 15 2022
a := n -> n!*hypergeom([-ceil(n/2)], [-n], -1):
seq(simplify(a(n)), n = 0..22); # Peter Luschny, Jul 15 2022
MATHEMATICA
Table[Sum[(-1)^j*Binomial[Ceiling[n/2], j]*(n-j)!, {j, 0, Ceiling[n/2]}], {n, 0, 30}] (* Vaclav Kotesovec, Feb 18 2017 *)
PROG
(PARI) for(n=0, 30, print1(sum(j=0, ceil(n/2), (-1)^j*binomial(ceil(n/2), j)*(n - j)!), ", ")) \\ Indranil Ghosh, Mar 08 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 18 2009
STATUS
approved