login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of {1,2,...,n} that have no odd fixed points.
6

%I #27 Apr 25 2024 09:09:56

%S 1,0,1,3,14,64,426,2790,24024,205056,2170680,22852200,287250480,

%T 3597143040,52370755920,760381337520,12585067447680,207863095910400,

%U 3854801333416320,71370457471716480,1465957162768492800,30071395843421184000,677696237345719468800

%N Number of permutations of {1,2,...,n} that have no odd fixed points.

%H Alois P. Heinz, <a href="/A161131/b161131.txt">Table of n, a(n) for n = 0..450</a>

%F a(n) = Sum_{j=0..floor(n/2)} d(n-j)*binomial(floor(n/2), j), where d(i)=A000166(i) are the derangement numbers.

%F a(n) = Sum_{j=0..ceiling(n/2)} (-1)^j*binomial(ceiling(n/2), j)*(n-j)!. - _Emeric Deutsch_, Jul 18 2009

%F a(n) ~ exp(-1/2) * n!. - _Vaclav Kotesovec_, Feb 18 2017

%F From _Peter Luschny_, Jul 15 2022: (Start)

%F a(n) = n!*hypergeom([-ceiling(n/2)], [-n], -1).

%F a(n) = A068106(n, floor(n/2)). (End)

%F D-finite with recurrence +16*a(n) -24*a(n-1) -4*(2*n-1)*(2*n-3)*a(n-2) +4*(2*n^2-10*n+15)*a(n-3) +2*(-10*n+29)*a(n-4) +2*(n-2)*(n-4)*a(n-5) +(n-4)*(n-5)*a(n-6)=0. - _R. J. Mathar_, Jul 26 2022

%e a(3)=3 because we have 312, 231, and 321.

%p d[0] := 1: for n to 25 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: add(d[n-j]*binomial(floor((1/2)*n), j), j = 0 .. floor((1/2)*n)) end proc; seq(a(n), n = 0 .. 22);

%p a := proc (n) options operator, arrow: add((-1)^j*binomial(ceil((1/2)*n), j)*factorial(n-j), j = 0 .. ceil((1/2)*n)) end proc; seq(a(n), n = 0 .. 22); # _Emeric Deutsch_, Jul 18 2009

%p # next Maple program:

%p a:= proc(n) option remember; `if`(n<4, [1, 0, 1, 3][n+1],

%p (8*(n-1)*(2*n-5)*a(n-1)+2*(8*n^4-48*n^3+102*n^2-90*n+29)*a(n-2)

%p -2*(2*n-1)*(n-2)*a(n-3)+(2*n-1)*(2*n-3)*(n-2)*(n-3)*a(n-4))

%p /(4*(2*n-3)*(2*n-5)))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jul 15 2022

%p a := n -> n!*hypergeom([-ceil(n/2)], [-n], -1):

%p seq(simplify(a(n)), n = 0..22); # _Peter Luschny_, Jul 15 2022

%t Table[Sum[(-1)^j*Binomial[Ceiling[n/2], j]*(n-j)!, {j, 0, Ceiling[n/2]}], {n, 0, 30}] (* _Vaclav Kotesovec_, Feb 18 2017 *)

%o (PARI) for(n=0, 30, print1(sum(j=0, ceil(n/2), (-1)^j*binomial(ceil(n/2), j)*(n - j)!),", ")) \\ _Indranil Ghosh_, Mar 08 2017

%Y Cf. A000166, A068106, A161132.

%K nonn

%O 0,4

%A _Emeric Deutsch_, Jul 18 2009