login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186638
a(0)=a(1)=a(2)=0; thereafter a(n) = n*a(n-1) + n*a(n-2)/(n-2) + (-1)^(n-1)*4/(n-2).
2
0, 0, 0, 4, 14, 78, 488, 3526, 28858, 264256, 2678632, 29787932, 360669542, 4723907966, 66555492656, 1003783052878, 16136592266226, 275459689319104, 4976428074043376, 94860000118416084, 1902729366895036542, 40062161968084543054, 883460565601444487384, 20363470614798268185558, 489687069917632739530538, 12264310955130816605856448
OFFSET
0,4
COMMENTS
Muir gives this recurrence without specifying the initial values.
In general, for the same recurrence a(n) = n*a(n-1) + n*a(n-2)/(n-2) + (-1)^(n-1)*4/(n-2), with a(1)=0, a(2)=0, a(3)=m, is a(n) ~ c * n!, where c = exp(-2) + (BesselI(0,2)-BesselI(1,2))*(m-1)/3. Set m=4 for this sequence and m=1 for A000179. - Vaclav Kotesovec, May 05 2015
REFERENCES
T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, Sect. 132, p. 112.
LINKS
FORMULA
Recurrence (for n>2): (n-2)*a(n) = (n^2 - 3*n + 3)*a(n-1) + (n^2 - 3*n + 3)*a(n-2) + (n-1)*a(n-3). - Vaclav Kotesovec, May 05 2015
a(n) ~ c * n!, where c = exp(-2) + BesselI(0,2) - BesselI(1,2) = 0.8242837309353508959489495107843515087389944891994982884067... . - Vaclav Kotesovec, May 05 2015
MAPLE
W:=proc(n) option remember; if n <= 2 then 0 else
n*W(n-1)+n*W(n-2)/(n-2)+(-1)^(n-1)*4/(n-2); fi; end;
MATHEMATICA
Flatten[{0, 0, RecurrenceTable[{a[2]==0, a[3]==4, a[n]==n*a[n-1]+n*a[n-2]/(n-2)+(-1)^(n-1)*4/(n-2)}, a, {n, 2, 20}]}] (* Vaclav Kotesovec, May 05 2015 *)
PROG
(Maxima) a[0]:0$ a[1]:0$ a[2]:0$ a[n]:=n*a[n-1]+n*a[n-2]/(n-2)+4*(-1)^(n-1)/(n-2)$ makelist(a[n], n, 0, 25); /* Bruno Berselli, May 23 2011 */
CROSSREFS
A000179 satisfies essentially the same recurrence.
Sequence in context: A341505 A231510 A161132 * A187847 A277039 A003707
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 24 2011
STATUS
approved