login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186640
Primes p such that the decimal expansion of 1/p has a periodic part of even length, but are not cyclic numbers (A001913).
1
11, 13, 73, 89, 101, 103, 127, 137, 139, 157, 197, 211, 241, 251, 281, 293, 331, 349, 353, 373, 401, 409, 421, 449, 457, 463, 521, 557, 569, 601, 607, 617, 641, 653, 661, 673, 677, 691, 739, 761, 769, 809, 829, 859, 877, 881, 929, 967, 997, 1009, 1049, 1061
OFFSET
1,1
FORMULA
p in A028416, but not A001913.
MAPLE
f1_d := proc(n) local st, period:
st := ithprime(n):
period := numtheory[order](10, st):
if (modp(period, 2) = 0) then
if (st-1 <> period) then
RETURN(st):
fi:
fi: end: seq(f1_d(n), n=1..200);
MATHEMATICA
Select[Prime[Range[200]], EvenQ[Length[RealDigits[1/#][[1, 1]]]] && MultiplicativeOrder[10, #] != # - 1 &] (* T. D. Noe, Oct 01 2012 *)
PROG
(PARI) is(p)=if(p>9 && isprime(p), my(o=znorder(Mod(10, p))); o%2==0 && o+1!=p, 0) \\ Charles R Greathouse IV, Oct 01 2012
CROSSREFS
Cf. A028416.
Sequence in context: A132201 A057189 A072580 * A226242 A116436 A185240
KEYWORD
nonn,base
AUTHOR
Jani Melik, Feb 24 2011
STATUS
approved