login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that the decimal expansion of 1/p has a periodic part of even length, but are not cyclic numbers (A001913).
1

%I #15 Oct 01 2012 15:37:32

%S 11,13,73,89,101,103,127,137,139,157,197,211,241,251,281,293,331,349,

%T 353,373,401,409,421,449,457,463,521,557,569,601,607,617,641,653,661,

%U 673,677,691,739,761,769,809,829,859,877,881,929,967,997,1009,1049,1061

%N Primes p such that the decimal expansion of 1/p has a periodic part of even length, but are not cyclic numbers (A001913).

%H T. D. Noe, <a href="/A186640/b186640.txt">Table of n, a(n) for n = 1..1000</a>

%F p in A028416, but not A001913.

%p f1_d := proc(n) local st, period:

%p st := ithprime(n):

%p period := numtheory[order](10,st):

%p if (modp(period,2) = 0) then

%p if (st-1 <> period) then

%p RETURN(st):

%p fi:

%p fi: end: seq(f1_d(n), n=1..200);

%t Select[Prime[Range[200]], EvenQ[Length[RealDigits[1/#][[1, 1]]]] && MultiplicativeOrder[10, #] != # - 1 &] (* _T. D. Noe_, Oct 01 2012 *)

%o (PARI) is(p)=if(p>9 && isprime(p), my(o=znorder(Mod(10, p))); o%2==0 && o+1!=p, 0) \\ _Charles R Greathouse IV_, Oct 01 2012

%Y Cf. A028416.

%K nonn,base

%O 1,1

%A _Jani Melik_, Feb 24 2011