login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations p of [n] with p(i) <> i^2.
2

%I #39 Jan 07 2016 03:51:27

%S 1,0,1,4,14,78,504,3720,30960,256320,2656080,30078720,369774720,

%T 4906137600,69894316800,1064341555200,16190733081600,279499828608000,

%U 5100017213491200,98087346669312000,1983334021853184000,42063950934061056000,933754193111900160000

%N Number of permutations p of [n] with p(i) <> i^2.

%C Also number of permutations of [n] that have no square fixed points.

%H Alois P. Heinz, <a href="/A187847/b187847.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = Sum_{j=0..floor(sqrt(n))} (-1)^j*C(floor(sqrt(n)),j)*(n-j)!.

%e a(3) = 4: (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

%p with(LinearAlgebra):

%p a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> `if`(j<>i^2, 1, 0)))):

%p seq(a(n), n=0..15);

%p # second Maple program:

%p a:= n->(p->add((-1)^(j)*binomial(p, j)*(n-j)!, j=0..p))(floor(sqrt(n))):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Nov 02 2014

%t a[n_] := With[{p = Floor[Sqrt[n]]}, Sum[(-1)^j*Binomial[p, j]*(n-j)!, {j, 0, p}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* _Jean-François Alcover_, Jan 07 2016, adapted from Maple *)

%Y Cf. A161131, A161132, A247978.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Apr 11 2011