login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least positive integer m such that m + n divides prime(m)^2 + prime(n)^2.
8

%I #21 Jan 04 2018 17:28:36

%S 1,8,15479,30,29,68,51,2,73,15,39,13,12,36,10,25,33,8,15,38,40,108,42,

%T 1,16,39,31,57,5,4,27,2,17,51,30,14,36,20,11,21,32,23,39,689,29,4,27,

%U 1873,184,7248,7,153,132,76,75,18,28,99,2,86

%N Least positive integer m such that m + n divides prime(m)^2 + prime(n)^2.

%C Conjecture: a(n) exists for any n > 0. - _Zhi-Wei Sun_, Sep 28 2014

%C If a(i) = j, then a(j) <= i. - _Derek Orr_, Sep 28 2014

%H Chai Wah Wu, <a href="/A247975/b247975.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..5000 from Zhi-Wei Sun)

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1409.5685">A new theorem on the prime-counting function</a>, arXiv:1409.5685, 2014.

%e a(2) = 8 since 8 + 2 = 10 divides prime(8)^2 + prime(2)^2 = 19^2 + 3^2 = 370.

%e a(3) = 15479 since 15479 + 3 = 15482 divides prime(15479)^2 + prime(3)^2 = 169789^2 + 5^2 = 28828304546 = 15482*1862053.

%e a(4703) = 760027770 since 760027770 + 4703 = 760032473 divides prime(760027770)^2 + prime(4703)^2 = 17111249191^2 + 45329^2 = 292794848878552872722 = 760032473*385239919714.

%t Do[m = 1; Label[aa]; If[Mod[Prime[m]^2 + Prime[n]^2, m + n] == 0, Print[n, " ", m]; Goto[bb]]; m = m + 1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]

%o (PARI)

%o a(n)=m=1;while((prime(m)^2+prime(n)^2)%(m+n),m++);m

%o vector(75,n,a(n)) \\ _Derek Orr_, Sep 28 2014

%Y Cf. A000040, A247824.

%K nonn

%O 1,2

%A _Zhi-Wei Sun_, Sep 28 2014