login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153271
Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3, read by rows.
3
5, 5, 30, 5, 35, 315, 5, 40, 440, 6160, 5, 45, 585, 9945, 208845, 5, 50, 750, 15000, 375000, 11250000, 5, 55, 935, 21505, 623645, 21827575, 894930575, 5, 60, 1140, 29640, 978120, 39124800, 1838865600, 99298742400, 5, 65, 1365, 39585, 1464645, 65909025, 3493178325, 213083877825, 14702787569925
OFFSET
0,1
COMMENTS
Row sums are {5, 35, 355, 6645, 219425, 11640805, 917404295, 101177741765, 14919432040765, 2839006665525525, 677815000136926955, ...}.
FORMULA
T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3.
EXAMPLE
Triangle begins as:
5;
5, 30;
5, 35, 315;
5, 40, 440, 6160;
5, 45, 585, 9945, 208845;
5, 50, 750, 15000, 375000, 11250000;
5, 55, 935, 21505, 623645, 21827575, 894930575;
MAPLE
m:=3; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
MATHEMATICA
T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j, 0, k}]];
Table[T[n, k, 3], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(PARI) T(n, k) = my(m=3); if(k==0, prime(m), prod(j=0, k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
(Magma) m:=3;
function T(n, k)
if k eq 0 then return NthPrime(m);
else return (&*[j*n + NthPrime(m): j in [0..k]]);
end if; return T; end function;
[T(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
(Sage)
def T(n, k):
m=3
if (k==0): return nth_prime(m)
else: return product(j*n + nth_prime(m) for j in (0..k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019
CROSSREFS
Cf. A153271 (m=2), this sequence (m=3), A153272 (m=4).
Sequences related to m values:
Sequence in context: A284140 A284182 A020551 * A261569 A117858 A365824
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 22 2008
EXTENSIONS
Edited by G. C. Greubel, Dec 03 2019
STATUS
approved