login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365824
a(n) = a(n-1) + 5*a(n-2), for n >= 0, with a(0) = 1 and a(1) = 0.
3
1, 0, 5, 5, 30, 55, 205, 480, 1505, 3905, 11430, 30955, 88105, 242880, 683405, 1897805, 5314830, 14803855, 41378005, 115397280, 322287305, 899273705, 2510710230, 7007078755, 19560629905, 54596023680, 152399173205, 425379291605, 1187375157630, 3314271615655
OFFSET
0,3
COMMENTS
This sequence {a(n)} appears in the formula for powers of phi21 := (1 + sqrt(21))/2 = A222134 = 2.791287..., together with b(n) = A015440(n-1), with A015440(-1) = 0, as phi21^n = a(n) + b(n)*phi21(n), for n >= 0. But the later given formulas in terms of scaled Chebyshev polynomials, called here {S21(n)}, are valid also for negative n values, i.e., for nonnegative powers of 1/phi21 = (-1 + sqrt(21))/10 = 0.35825756949... = A367453.
Limit_{n->oo} a(n)/a(n-1) = (1 + sqrt(21))/2 = A222134 = 2.791287...
FORMULA
a(n) = a(n-1) + 5*a(n-2), for n >= 0, with a(0) = 1 and a(1) = 0.
G.f.: (1 - x)/(1 - x - 5*x^2).
a(n) = S21(n+1) - S21(n), for n >= 0, where S21(n) = sqrt(-5)^(n-1)*S(n-1, 1/sqrt(-5)), with the Chebyshev polynomials {S(n, x)} (see A049310).
The above mentioned sequence {b(n)} has terms b(n) = A015440(n-1) = S21(n), for n >= 0, with the same recurrence as {a(n)} but with b(0) = 0 and b(1) = 1, and g.f. x/(1 - x - 5*x^2).
The formula for negative indices of S is: S(-1, 0) = 0 and S(-n, x) = -S(n-2, x) for n >= 2.
EXAMPLE
phi21^2 = a(2) + b(2)*phi(n) = 5 + phi21 = 7.79128784..., a real algebraic integer in Q(sqrt(21)).
(1/phi21)^2 = a(-2) + b(-2)*phi21 = (1/25)*(6 - phi21) = 0.12834848..., a real algebraic number in Q(sqrt(21)).
MATHEMATICA
LinearRecurrence[{1, 5}, {1, 0}, 50] (* Paolo Xausa, Nov 21 2023 *)
PROG
(PARI) a(n) = abs([1, 3; 1, -2]^(n-2)*[5; 5])[2, 1] \\ Thomas Scheuerle, Nov 20 2023
CROSSREFS
Cf. A010477 (sqrt(21)), A015440, A049310, A222134, A367453.
Sequence in context: A153271 A261569 A117858 * A014434 A375989 A106830
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 20 2023
STATUS
approved