login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) + 5*a(n-2), for n >= 0, with a(0) = 1 and a(1) = 0.
3

%I #28 Mar 11 2024 23:10:43

%S 1,0,5,5,30,55,205,480,1505,3905,11430,30955,88105,242880,683405,

%T 1897805,5314830,14803855,41378005,115397280,322287305,899273705,

%U 2510710230,7007078755,19560629905,54596023680,152399173205,425379291605,1187375157630,3314271615655

%N a(n) = a(n-1) + 5*a(n-2), for n >= 0, with a(0) = 1 and a(1) = 0.

%C This sequence {a(n)} appears in the formula for powers of phi21 := (1 + sqrt(21))/2 = A222134 = 2.791287..., together with b(n) = A015440(n-1), with A015440(-1) = 0, as phi21^n = a(n) + b(n)*phi21(n), for n >= 0. But the later given formulas in terms of scaled Chebyshev polynomials, called here {S21(n)}, are valid also for negative n values, i.e., for nonnegative powers of 1/phi21 = (-1 + sqrt(21))/10 = 0.35825756949... = A367453.

%C Limit_{n->oo} a(n)/a(n-1) = (1 + sqrt(21))/2 = A222134 = 2.791287...

%H Paolo Xausa, <a href="/A365824/b365824.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,5).

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.

%F a(n) = a(n-1) + 5*a(n-2), for n >= 0, with a(0) = 1 and a(1) = 0.

%F G.f.: (1 - x)/(1 - x - 5*x^2).

%F a(n) = S21(n+1) - S21(n), for n >= 0, where S21(n) = sqrt(-5)^(n-1)*S(n-1, 1/sqrt(-5)), with the Chebyshev polynomials {S(n, x)} (see A049310).

%F The above mentioned sequence {b(n)} has terms b(n) = A015440(n-1) = S21(n), for n >= 0, with the same recurrence as {a(n)} but with b(0) = 0 and b(1) = 1, and g.f. x/(1 - x - 5*x^2).

%F The formula for negative indices of S is: S(-1, 0) = 0 and S(-n, x) = -S(n-2, x) for n >= 2.

%e phi21^2 = a(2) + b(2)*phi(n) = 5 + phi21 = 7.79128784..., a real algebraic integer in Q(sqrt(21)).

%e (1/phi21)^2 = a(-2) + b(-2)*phi21 = (1/25)*(6 - phi21) = 0.12834848..., a real algebraic number in Q(sqrt(21)).

%t LinearRecurrence[{1,5},{1,0},50] (* _Paolo Xausa_, Nov 21 2023 *)

%o (PARI) a(n) = abs([1, 3; 1, -2]^(n-2)*[5; 5])[2, 1] \\ _Thomas Scheuerle_, Nov 20 2023

%Y Cf. A010477 (sqrt(21)), A015440, A049310, A222134, A367453.

%K nonn,easy

%O 0,3

%A _Wolfdieter Lang_, Nov 20 2023