login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261569
Expansion of Product_{k>=1} (1 + 5*x^k).
7
1, 5, 5, 30, 30, 55, 180, 205, 330, 480, 1230, 1380, 2255, 3030, 4530, 8555, 10680, 15330, 21330, 29730, 39480, 67380, 81505, 116280, 153030, 210930, 270805, 370080, 534330, 675480, 900480, 1180380, 1544130, 1997280, 2597280, 3304805, 4581180, 5653080
OFFSET
0,2
COMMENTS
In general, for a fixed integer m > 0, if g.f. = Product_{k>=1} (1 + m*x^k) then a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt((m+1)*Pi)*n^(3/4)), where c = Pi^2/6 + log(m)^2/2 + polylog(2, -1/m) = -polylog(2, -m). - Vaclav Kotesovec, Jan 04 2016
LINKS
FORMULA
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(6*Pi)*n^(3/4)), where c = Pi^2/6 + log(5)^2/2 + polylog(2, -1/5) = 2.74927912606080829002558751537626864449... . - Vaclav Kotesovec, Jan 04 2016
G.f.: Sum_{i>=0} 5^i*x^(i*(i+1)/2)/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018
MAPLE
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, b(n, i-1)+`if`(i>n, 0, 5*b(n-i, i-1))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Aug 24 2015
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1 + 5*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*5^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
(QPochhammer[-5, x]/6 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 24 2015
STATUS
approved