OFFSET
0,2
COMMENTS
All terms are multiples of 3.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
FORMULA
a(n) = A061037(2+3n).
a(n) mod 9 = 3*A010872(n).
G.f.: 3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/ ((x-1)^3*(1+x)^3*(x^2+1)^3). - R. J. Mathar, Sep 22 2008
a(n) = 3*n*(3*n+4)*(37-27*cos(n*Pi)-6*cos(n*Pi/2))/64. - Luce ETIENNE, Mar 31 2017
Sum_{n>=1} 1/a(n) = 5/4 - 5*Pi/(48*sqrt(3)) - 11*log(3)/16. - Amiram Eldar, Sep 11 2022
MATHEMATICA
Table[Numerator[1/4 - 1/#^2] &[2 + 3 n], {n, 0, 47}] (* Michael De Vlieger, Apr 02 2017 *)
CoefficientList[Series[3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/ ((x-1)^3*(1+x)^3*(x^2+1)^3), {x, 0, 50}], x] (* G. C. Greubel, Sep 19 2018 *)
PROG
(PARI) my(x='x+O('x^50)); concat([0], Vec(3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/((x-1)^3*(1+x)^3*(x^2+1)^3))) \\ G. C. Greubel, Sep 19 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/((x-1)^3*(1+x)^3*(x^2+1)^3))); // G. C. Greubel, Sep 19 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 22 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Sep 22 2008
STATUS
approved