Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #2 Mar 30 2012 18:37:21
%S 1,1,1,2,1,1,6,3,1,1,32,16,5,1,1,332,166,51,9,1,1,6928,3464,1059,181,
%T 17,1,1,292334,146167,44620,7557,681,33,1,1,24875760,12437880,3795202,
%U 641035,57097,2641,65,1,1,4254812880,2127406440,649054326,109540639
%N G.f.: 1/(1-x) = (1-x*y) * Sum_{k>=0} Sum_{n>=k} T(n,k)*x^n*y^k/(1+x)^(2^n-2^k).
%F Unsigned column 0 of matrix inverse forms A001192, which is the number of full sets of size n.
%e Triangle begins:
%e 1;
%e 1, 1;
%e 2, 1, 1;
%e 6, 3, 1, 1;
%e 32, 16, 5, 1, 1;
%e 332, 166, 51, 9, 1, 1;
%e 6928, 3464, 1059, 181, 17, 1, 1;
%e 292334, 146167, 44620, 7557, 681, 33, 1, 1;
%e 24875760, 12437880, 3795202, 641035, 57097, 2641, 65, 1, 1;
%e 4254812880, 2127406440, 649054326, 109540639, 9723237, 443921, 10401, 129, 1, 1; ...
%e Matrix inverse of this triangle begins:
%e 1;
%e -1,1;
%e -1,-1,1;
%e -2,-2,-1,1;
%e -9,-9,-4,-1,1;
%e -88,-88,-38,-8,-1,1;
%e -1802,-1802,-772,-156,-16,-1,1;
%e -75598,-75598,-32313,-6456,-632,-32,-1,1; ...
%e in which unsigned column 0 = A001192, number of full sets of size n.
%o (PARI) {T(n,k)=if(n==k,1,polcoeff(-(1-x)*sum(m=0,n-k-1,T(m+k,k)*x^m/(1+x +x*O(x^n))^(2^(m+k)-2^k)),n-k))}
%o (PARI) {T(n,k)=local(M,N); M=matrix(n+1,n+1,r,c,if(r>=c,polcoeff(1/(1-x+O(x^(r-c+1)))^1*(1+x)^(2^(r-1)-2^(c-1)),r-c))); N=matrix(n+1,n+1,r,c,if(r>=c,polcoeff(1/(1-x+O(x^(r-c+1)))^2*(1+x)^(2^(r-1)-2^(c-1)),r-c))); (M^-1*N)[n+1,k+1]}
%Y Cf. A001192, columns: A172401, A172402, A172403.
%K nonn,tabl
%O 0,4
%A _Paul D. Hanna_, Feb 01 2010