OFFSET
0,2
COMMENTS
A 2-Motzkin meander is a lattice path that does not go below the x-axis. with steps U = (1,1), D = (1,-1) and two copies R = (1,0) and B = (1,0), i.e. red and blue level steps.
A catastrophe is a step C = (1,-k) from altitude k to altitude 0 for k > 1.
LINKS
Cyril Banderier and Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017.
FORMULA
G.f.: (1 - 4*z - sqrt(1 - 4*z))*z/(5*sqrt(1 - 4*z)*z^2 + 12*z^3 - 5*z*sqrt(-4*z + 1) - 15*z^2 + sqrt(-4*z + 1) + 7*z - 1).
D-finite with recurrence n*a(n) +4*(-3*n+2)*a(n-1) +(53*n-70)*a(n-2) +(-107*n+210)*a(n-3) +(101*n-268)*a(n-4) +18*(-2*n+7)*a(n-5)=0. - R. J. Mathar, Jan 28 2024
EXAMPLE
For n = 2 the a(2) = 10 solutions are UU, UR, UB, UD, RU, RR, RB, BU, BR, BB.
For n = 3 the a(3) = 36 solutions are UUU, UUR, UUB, UUD, UUC, URU, URR, URB, URD, UBU, UBR, UBB, UBD, UDU, UDR, UDB, RUU, RUR, RUB, RUD, RRU, RRR, RRB, RBU, RBR, RBB, BUU, BUR, BUB, BUD, BRU, BRR, BRB, BBU, BBR, BBB.
MAPLE
K := 1 - z*(1/u + 2 + u);
u1 := solve(K, u)[2];
M := (1 - u1)/(1 - 4*z);
E := u1/z;
M1 := z*E^2; Q := z*(M - E - M1);
series(M/(1 - Q), z, 30);
PROG
(PARI) my(N=44, z='z+O('z^N), S=sqrt(1-4*z)); Vec((1 - 4*z - S)*z/(5*S*z^2 + 12*z^3 - 5*z*S - 15*z^2 + S + 7*z - 1))
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Florian Schager, Jan 23 2024
STATUS
approved