login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129156
Number of primitive Dyck factors in all skew Dyck paths of semilength n.
3
0, 1, 3, 10, 36, 136, 532, 2139, 8796, 36859, 156946, 677514, 2959669, 13063493, 58184838, 261230814, 1181144792, 5374078726, 24588562675, 113067256235, 522270436044, 2422244159067, 11275548912967, 52663412854571
OFFSET
0,3
COMMENTS
A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. A primitive Dyck factor is a subpath of the form UPD that starts on the x-axis, P being a Dyck path.
LINKS
E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
FORMULA
a(n) = Sum_{k=0,..,n} k*A129154(n,k).
a(n) = A128742(n) - A129158(n).
G.f.: (3-3*z-sqrt(1-6*z+5*z^2))*(1-sqrt(1-4*z))/(1 +z + sqrt(1 - 6*z + 5*z^2))^2.
a(n) ~ (5-sqrt(5)) * 5^(n+3/2) / (36*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
EXAMPLE
a(2)=3 because in all skew Dyck paths of semilength 3, namely (UD)(UD), (UUDD) and UUDL, we have altogether 3 primitive Dyck factors (shown between parentheses).
MAPLE
G:=(3-3*z-sqrt(1-6*z+5*z^2))*(1-sqrt(1-4*z))/(1+z+sqrt(1-6*z+5*z^2))^2: Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=0..27);
MATHEMATICA
CoefficientList[Series[(3-3*x-Sqrt[1-6*x+5*x^2])*(1-Sqrt[1-4*x])/ (1+x+Sqrt[1-6*x+5*x^2])^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) z='z+O('z^25); concat([0], Vec((3-3*z-sqrt(1-6*z+5*z^2))*(1-sqrt(1-4*z))/(1 +z + sqrt(1 - 6*z + 5*z^2))^2)) \\ G. C. Greubel, Feb 09 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 02 2007
STATUS
approved