login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128742
Number of compositions of n which avoid the pattern 112.
4
1, 1, 2, 4, 7, 13, 24, 43, 78, 142, 256, 463, 838, 1513, 2735, 4944, 8931, 16139, 29164, 52693, 95213, 172042, 310855, 561682, 1014898, 1833794, 3313454, 5987026, 10817836, 19546558, 35318325, 63816013, 115307993, 208347899, 376459955, 680218580, 1229074432
OFFSET
0,3
LINKS
S. Heubach and T. Mansour, Enumeration of 3-letter patterns in combinations, arXiv:math/0603285 [math.CO], 2006.
FORMULA
G.f.: 1/( 1 - Sum_{j>=1} x^j*Product_{i=1..j-1} (1-x^(2*i)) ).
G.f.: 1/( Sum_{k>=0} (-1)^k * x^(k^2) / Product_{j=1..k} (1-x^(2*j-1)) ). - Seiichi Manyama, Jan 13 2022
MAPLE
b:= proc(n, t, l) option remember; `if`(n=0, 1, add(
b(n-j, is(j=l), j), j=1..min(n, `if`(t, l, n))))
end:
a:= n-> b(n, false, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Oct 24 2017
MATHEMATICA
b[n_, t_, l_] := b[n, t, l] = If[n == 0, 1, Sum[b[n - j, j == l, j], {j, 1, Min[n, If[t, l, n]]}]];
a[n_] := b[n, False, 0];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(1/(1-sum(k=1, N, x^k*prod(j=1, k-1, 1-x^(2*j))))) \\ Seiichi Manyama, Jan 13 2022
(PARI) my(N=40, x='x+O('x^N)); Vec(1/sum(k=0, N, (-1)^k*x^k^2/prod(j=1, k, 1-x^(2*j-1)))) \\ Seiichi Manyama, Jan 13 2022
CROSSREFS
Sequence in context: A049284 A049285 A002843 * A318748 A107281 A006744
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 08 2007
STATUS
approved