login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129155
Number of skew Dyck paths of semilength n that have no primitive Dyck factors.
2
1, 0, 1, 4, 15, 59, 241, 1011, 4326, 18797, 82685, 367410, 1646494, 7432270, 33761322, 154213566, 707882503, 3263713148, 15107319268, 70182332975, 327111450097, 1529226524057, 7168880978609, 33693179852563
OFFSET
0,4
COMMENTS
A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. A primitive Dyck factor is a subpath of the form UPD that starts on the x-axis, P being a Dyck path.
LINKS
E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
FORMULA
a(n) = A129154(n,0).
G.f.: (3-3*z-sqrt(1-6*z+5*z^2))/(2+z-sqrt(1-4*z)+sqrt(1-6*z+5*z^2)).
a(n) ~ (475 + 697*sqrt(5)) * 5^n / (3364*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
EXAMPLE
a(3)=4 because we have UUUDLD, UUDUDL, UUUDDL and UUUDLL.
MAPLE
G:=(3-3*z-sqrt(1-6*z+5*z^2))/(2+z-sqrt(1-4*z)+sqrt(1-6*z+5*z^2)): Gser:=series(G, z=0, 32): seq(coeff(Gser, z, n), n=0..28);
MATHEMATICA
CoefficientList[Series[(3-3*x-Sqrt[1-6*x+5*x^2])/(2+x-Sqrt[1-4*x]+Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) z='z+O('z^50); Vec((3-3*z-sqrt(1-6*z+5*z^2))/(2+z-sqrt(1-4*z)+sqrt(1-6*z+5*z^2))) \\ G. C. Greubel, Mar 20 2017
CROSSREFS
Sequence in context: A017951 A326212 A199210 * A219312 A271752 A291244
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 02 2007
STATUS
approved