login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129153
Rencontres numbers: permutations with exactly 8 fixed points.
3
1, 0, 45, 330, 4455, 56628, 795795, 11930490, 190900710, 3245287760, 58415223438, 1109889169740, 22197783520770, 466153453732680, 10255375982438730, 235873647595600476, 5660967542295146895, 141524188557377590800
OFFSET
8,3
FORMULA
a(n) = A008290(n,8).
E.g.f.: exp(-x)/(1-x)*(x^8/8!). [Joerg Arndt, Feb 19 2014]
O.g.f.: (1/8!)*Sum_{k>=8} k!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 15 2017
D-finite with recurrence (-n+8)*a(n) +n*(n-9)*a(n-1) +n*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 06 2023
MAPLE
a:= n-> -sum((n-1)!*sum((-1)^k/(k-7)!, j=0..n-1), k=7..n-1)/8!: seq(a(n), n=8..30);
MATHEMATICA
With[{nn=40}, Drop[CoefficientList[Series[Exp[-x]/(1 - x) x^8/8!, {x, 0, nn}], x]Range[0, nn]!, 8]] (* Vincenzo Librandi, Feb 19 2014 *)
PROG
(PARI) x='x+O('x^66); Vec( serlaplace(exp(-x)/(1-x)*(x^8/8!)) ) \\ Joerg Arndt, Feb 19 2014
CROSSREFS
Column k=8 of A008290.
Sequence in context: A324458 A073873 A272850 * A156719 A228059 A155015
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, May 25 2007
EXTENSIONS
Changed offset from 0 to 8 by Vincenzo Librandi, Feb 19 2014
STATUS
approved