|
|
A272850
|
|
a(n) = (n^2 + (n+1)^2)*(n^2 + (n+1)^2 + 2*n*(n+1)).
|
|
1
|
|
|
1, 45, 325, 1225, 3321, 7381, 14365, 25425, 41905, 65341, 97461, 140185, 195625, 266085, 354061, 462241, 593505, 750925, 937765, 1157481, 1413721, 1710325, 2051325, 2440945, 2883601, 3383901, 3946645, 4576825, 5279625
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Larger of pair of integers whose Pythagorean means are all integers.
The smaller of the pairs are: (A001844).
The arithmetic means are: (A007204)
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (2*n^2 + 2*n + 1)*(4*n^2 + 4*n + 1).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
G.f.: (1 + 40*x + 110*x^2 + 40*x^3 + x^4) / (1-x)^5. (End)
|
|
PROG
|
(PARI) Vec((1+40*x+110*x^2+40*x^3+x^4)/(1-x)^5 + O(x^50)) \\ Colin Barker, May 24 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|