Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 May 25 2016 08:53:52
%S 1,45,325,1225,3321,7381,14365,25425,41905,65341,97461,140185,195625,
%T 266085,354061,462241,593505,750925,937765,1157481,1413721,1710325,
%U 2051325,2440945,2883601,3383901,3946645,4576825,5279625
%N a(n) = (n^2 + (n+1)^2)*(n^2 + (n+1)^2 + 2*n*(n+1)).
%C Larger of pair of integers whose Pythagorean means are all integers.
%C The smaller of the pairs are: (A001844).
%C The arithmetic means are: (A007204)
%C The geometric means are: (A005917)
%C The harmonic means are: (A016754).
%C Subtracting terms in A016754 from A007204 gives complementary harmonics (A060300).
%H Seiichi Manyama, <a href="/A272850/b272850.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = (2*n^2 + 2*n + 1)*(4*n^2 + 4*n + 1).
%F From _Colin Barker_, May 24 2016: (Start)
%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
%F G.f.: (1 + 40*x + 110*x^2 + 40*x^3 + x^4) / (1-x)^5. (End)
%o (PARI) a(n)=8*n^4 + 16*n^3 + 14*n^2 + 6*n + 1 \\ _Charles R Greathouse IV_, May 23 2016
%o (PARI) Vec((1+40*x+110*x^2+40*x^3+x^4)/(1-x)^5 + O(x^50)) \\ _Colin Barker_, May 24 2016
%Y Cf. A001844, A007204, A005917, A016754, A060300.
%K nonn,easy
%O 0,2
%A _Matthew Badley_, May 07 2016