login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272851
Number of distinct nonzero Fibonacci numbers among the contiguous substrings of the binary digits of n.
4
1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 3, 5, 3, 2, 3, 3, 2, 3, 3, 4, 4, 4, 4, 3, 5, 5, 3, 5, 3, 2, 3, 3, 4, 4, 2, 3, 3, 3, 4, 3, 4, 5, 4, 5, 4, 4, 4, 4, 3, 3, 5, 6, 5, 6, 4, 3, 5, 5, 3, 5, 3, 2, 3, 3, 3, 4, 4, 5, 4, 4, 3, 2, 3, 4, 3, 5, 3, 3, 4
OFFSET
1,2
EXAMPLE
a(53) = 6 because 53=(110101)_2 which contains (1)_2 = 1, (10)_2 = 2, (11)_2 = 3, (101)_2 = 5, (1101)_2 = 13 and (10101)_2 = 21. The one digit only contributes once.
MATHEMATICA
s = Fibonacci@ Range@ 30; Table[Length@ Select[Union@ Flatten@ Function[k, Map[FromDigits[#, 2] & /@ Partition[k, #, 1] &, Range@ Length@ k]]@IntegerDigits[#, 2] &@ n, MemberQ[s, #] &], {n, 120}] (* Michael De Vlieger, May 08 2016 *)
PROG
(PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) ;
a(n) = {vb = binary(n); vf = []; for (i=1, #vb, for (j=1, #vb - i + 1, pvb = vector(j, k, vb[i+k-1]); f = subst(Pol(pvb), x, 2); if (f && isfib(f), vf = Set(concat(vf, f))); ); ); #vf; } \\ Michel Marcus, May 08 2016
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Marko Riedel, May 07 2016
STATUS
approved