login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361088
Irregular table, read by rows, where row n holds the tau signature of n, i.e., the shortest sequence (tau(n+k), 0 <= k <= m) that uniquely identifies n; tau = A000005.
0
1, 2, 2, 2, 3, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 3, 4, 3, 3, 4, 2, 4, 2, 6, 2, 6, 2, 4, 6, 2, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 5, 2, 2, 6, 2, 6, 6, 2, 6, 2, 6, 4, 4, 2, 6, 4, 4, 2, 8, 4, 4, 2, 8, 4, 2, 8, 2, 8, 3, 8, 3, 3, 4, 4, 6, 2, 4, 4, 6, 2, 8, 4, 6, 2, 8, 2, 6, 2, 8, 2, 6, 2, 8
OFFSET
1,2
COMMENTS
Row lengths are given by A309981(n) + 1; see there (and the OEIS wiki page) for examples.
LINKS
M. F. Hasler et al, tau signature, OEIS Wiki, April 2023.
EXAMPLE
The first 20 rows read as follows:
n | row n: tau-signature of n
---+--------------------------
1 | [1]
2 | [2, 2]
3 | [2, 3]
4 | [3, 2]
5 | [2, 4, 2]
6 | [4, 2, 4]
7 | [2, 4, 3]
8 | [4, 3]
9 | [3, 4, 2]
10 | [4, 2, 6]
11 | [2, 6, 2, 4]
12 | [6, 2, 4]
13 | [2, 4, 4, 5]
14 | [4, 4, 5]
15 | [4, 5]
16 | [5, 2]
17 | [2, 6, 2, 6]
18 | [6, 2, 6]
19 | [2, 6, 4, 4, 2]
20 | [6, 4, 4, 2, 8]
See the wiki page for proofs.
PROG
(PARI) signatures=Map(); LIMIT=10^5 /* This search limit should (possibly dynamically, or by hand) be increased as n grows beyond 100. As of today, the value for n=49 is not yet proven. */
A361088_row(n, s=0)={if(!s, s=iferr(mapget(signatures, n), E, []); #s|| for(L=1, oo, s=concat(s, numdiv(n+L-1)); A361088_row(n, s)|| [mapput(signatures, n, [s, LIMIT]); return(s)]); s[2]>=LIMIT&& return(s[1]); s=s[1]; while(A361088_row(n, s), s=concat(s, numdiv(n+#r))); mapput(signatures, n, [s, LIMIT]); return(s)); my(r=iferr(mapget(signatures, s), E, [])); if(!r, r=[n, n], r[2]<n, r=[r[1], n, n]; mapput(signatures, s, r); return(n), #r>2, return(r[#r-1]), r[#r]>=LIMIT, return); for(j=max(r[2], n)+1, LIMIT, for(k=1, #s, numdiv(j+k-1)!=s[k]&& next(2)); mapput(signatures, s, [n, j, j]); return(j)); mapput(signatures, s, [n, LIMIT])
CROSSREFS
Cf. A309981, A327265, A161460, A000005 (tau = numdiv).
Sequence in context: A096916 A098014 A059957 * A165924 A212628 A272851
KEYWORD
nonn,tabf
AUTHOR
M. F. Hasler, Apr 07 2023
STATUS
approved