The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A361086 a(n) = a(n-1)*(a(n-1)^2 - 1) with a(0) = 2. 1
 2, 6, 210, 9260790, 794226015149981778210, 500993769952171221242360491304282624082148055373236400176882790 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(6) has 189 digits so it is not displayed here. It appears that the sequence might be squarefree, but this is unproved so far. If n is the least index such that p^2 | a(n+1) for some prime p, then one must have p^2 | a(n)+1 or p^2 | a(n)-1, and p >= 5. If p is prime and p^2 | a(n) for some n, then p > 10^6. - Robert Israel, Apr 16 2023 The constant c in the formula can be obtained as exp(log(a(n))/3^n) with more than 3^n/2 significant digits. - M. F. Hasler, Apr 13 2023 LINKS Winston de Greef, Table of n, a(n) for n = 0..7 Dan Asimov, Interesting sequence on MathOverflow, math-fun mailing list (access restricted to subscribers), Mar 28 2023. Fredrick M. Nelson, Does a(0)=6, a(n+1)=a(n)^3-a(n), define a square-free sequence?, MathOverflow, Mar 24 2023. FORMULA a(n) ~ c^(3^n), where c = 1.8114401993215336517307679103877676944735007990106818615618948774060863424... - Vaclav Kotesovec, Apr 13 2023 EXAMPLE After a(0) = 2, we have: a(1) = a(0) * 3 = 6 = A002110(2), a(2) = a(1) * 5 * 7 = 210 = A002110(4), a(3) = a(2) * 11 * 19 * 211 = A002110(5) * 19 * 211, a(4) = a(3) * 23 * 137 * 2939 * 101 * 91691, (*) a(5) = a(4) * 2381 * 4547 * 73360073674487 * 4111 * 9463 * 20415865295227, (*) a(6) = a(5) * (a(5)-1) * (a(5)+1) where a(5)-1 = 8297 * 2809343 * 1697219017859557 * 12663932268383565339458540396093810087 and a(5)+1 = 6529 * 11220511276757421196620288973 * 6838691459094922770231096737923, etc. (*) We list first the prime factors of a(n-1)-1, then those of a(n-1)+1. MAPLE a:= proc(n) option remember; procname(n-1)*(procname(n-1)-1)*(procname(n-1)+1) end proc: a(0):= 2: seq(a(i), i=0..7); # Robert Israel, Apr 16 2023 MATHEMATICA RecurrenceTable[{a[n] == a[n-1]*(a[n-1]^2 - 1), a[0] == 2}, a, {n, 0, 6}] (* Vaclav Kotesovec, Apr 13 2023 *) PROG (PARI) A361086_first(N)=vector(N, i, N=if(i>1, N*(N^2-1), 2)) CROSSREFS Cf. A002110, A007018, A228649, A361085. Sequence in context: A091439 A285102 A285101 * A176782 A357191 A013083 Adjacent sequences: A361083 A361084 A361085 * A361087 A361088 A361089 KEYWORD nonn,less AUTHOR M. F. Hasler, Mar 28 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 16:46 EDT 2024. Contains 373432 sequences. (Running on oeis4.)