OFFSET
0,1
FORMULA
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A285102(n) = { if(0==n, 2, lcm(A285102(n-1), A242378(n, A285102(n-1)))/gcd(A285102(n-1), A242378(n, A285102(n-1)))); };
(Scheme) (definec (A285102 n) (if (zero? n) 2 (/ (lcm (A285102 (- n 1)) (A242378bi n (A285102 (- n 1)))) (gcd (A285102 (- n 1)) (A242378bi n (A285102 (- n 1)))))))
from sympy import factorint, prime, primepi
from sympy.ntheory.factor_ import core
from operator import mul
def a003961(n):
f=factorint(n)
return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**f[i] for i in f])
def a242378(k, n):
while k>0:
n=a003961(n)
k-=1
return n
l=[2]
for n in range(1, 12):
x=l[n - 1]
l.append(x*a242378(n, x))
print([core(j) for j in l]) # Indranil Ghosh, Jun 27 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 15 2017
STATUS
approved