login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285103
Number of odd terms on row n of A053632: a(n) = A000120(A068052(n)).
6
1, 2, 4, 6, 6, 12, 12, 16, 22, 28, 32, 30, 36, 52, 48, 62, 62, 68, 88, 104, 116, 108, 128, 128, 132, 168, 160, 168, 200, 204, 240, 232, 242, 284, 300, 324, 332, 348, 352, 352, 412, 440, 400, 466, 460, 516, 496, 566, 582, 580, 608, 646, 676, 736, 716, 782, 728, 816, 832, 856, 916, 924, 948, 1034, 1008, 1044, 1096, 1154, 1112, 1212, 1204, 1188
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5000 (first 257 terms from Antti Karttunen)
FORMULA
a(n) = A000120(A068052(n)).
a(n) = A001221(A285102(n)) = A001222(A285102(n)).
A285104(n) = 2^n - a(n).
A000124(n) = a(n) + A285105(n).
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
(t-> Bits[Xor](2^n*t, t))(b(n-1)))
end:
a:= n-> convert(Bits[Split](b(n)), `+`):
seq(a(n), n=0..71); # Alois P. Heinz, Mar 07 2024
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, With[{t = b[n-1]}, BitXor[2^n*t, t]]];
a[n_] := DigitCount[b[n], 2, 1];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 17 2024, after Alois P. Heinz *)
PROG
(Scheme) (define (A285103 n) (A000120 (A068052 n)))
(Python) # uses [A000120]
l=[1]
for n in range(1, 101):
x = l[n - 1]
l.append(x^(2**n*x))
print([A000120(k) for k in l]) # Indranil Ghosh, Jun 28 2017
CROSSREFS
Number of odd term on row n of A053632.
Sequence in context: A364828 A141677 A087459 * A123258 A278227 A104968
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 15 2017
STATUS
approved