login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068052
Start from 1, shift one left and sum mod 2 (bitwise-XOR) to get 3 (11 in binary), then shift two steps left and XOR to get 15 (1111 in binary), then three steps and XOR to get 119 (1110111 in binary), then four steps and so on.
10
1, 3, 15, 119, 1799, 59367, 3743271, 481693095, 123123509927, 62989418816679, 64491023022979239, 132015402419352060071, 540829047855347718631591, 4430403202865824763042320551, 72583450474242118015031400337575, 2378466805556971511916001231449723047
OFFSET
0,2
COMMENTS
a(n) = each row of A053632 reduced mod 2 and interpreted as a binary number.
LINKS
FORMULA
a(0) = 1; for n > 0, a(n) = a(n-1) XOR (2^n)*a(n-1), where XOR is bitwise-XOR (A003987).
a(n) = A248663(A285101(n)) = A048675(A285102(n)).
A000120(a(n)) = A285103(n). [Number of ones in binary representation.]
A080791(a(n)) = A285105(n). [Number of nonleading zeros.]
MAPLE
with(gfun, seriestolist); [seq(foo(map(`mod`, seriestolist(series(mul(1+(z^i), i=1..n), z, binomial(n+1, 2)+1)), 2)), n=0..20)];
foo := proc(a) local i; add(a[i]*2^(i-1), i=1..nops(a)); end;
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1,
(t-> Bits[Xor](2^n*t, t))(a(n-1)))
end:
seq(a(n), n=0..16); # Alois P. Heinz, Mar 07 2024
MATHEMATICA
FoldList[BitXor[#, #*#2]&, 1, 2^Range[20]] (* Paolo Xausa, Mar 07 2024 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A068052 n) (if (zero? n) 1 (A003987bi (A068052 (- n 1)) (* (A000079 n) (A068052 (- n 1)))))) ;; A003987bi implements bitwise-XOR (A003987).
(PARI) a(n) = if(n<1, 1, bitxor(a(n - 1), 2^n*a(n - 1))); \\ Indranil Ghosh, Apr 15 2017, after formula by Antti Karttunen
CROSSREFS
Same sequence shown in binary: A068053.
Sequence in context: A145161 A121422 A060639 * A379366 A379364 A068859
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Feb 13 2002
EXTENSIONS
Formulas added by Antti Karttunen, Apr 15 2017
STATUS
approved