OFFSET
0,2
COMMENTS
a(n) = each row of A053632 reduced mod 2 and interpreted as a binary number.
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..64
FORMULA
MAPLE
with(gfun, seriestolist); [seq(foo(map(`mod`, seriestolist(series(mul(1+(z^i), i=1..n), z, binomial(n+1, 2)+1)), 2)), n=0..20)];
foo := proc(a) local i; add(a[i]*2^(i-1), i=1..nops(a)); end;
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1,
(t-> Bits[Xor](2^n*t, t))(a(n-1)))
end:
seq(a(n), n=0..16); # Alois P. Heinz, Mar 07 2024
MATHEMATICA
FoldList[BitXor[#, #*#2]&, 1, 2^Range[20]] (* Paolo Xausa, Mar 07 2024 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A068052 n) (if (zero? n) 1 (A003987bi (A068052 (- n 1)) (* (A000079 n) (A068052 (- n 1)))))) ;; A003987bi implements bitwise-XOR (A003987).
(PARI) a(n) = if(n<1, 1, bitxor(a(n - 1), 2^n*a(n - 1))); \\ Indranil Ghosh, Apr 15 2017, after formula by Antti Karttunen
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Feb 13 2002
EXTENSIONS
Formulas added by Antti Karttunen, Apr 15 2017
STATUS
approved