login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct nonzero Fibonacci numbers among the contiguous substrings of the binary digits of n.
4

%I #25 Nov 08 2016 21:03:53

%S 1,2,2,2,3,3,2,3,2,3,4,3,5,3,2,3,3,2,3,3,4,4,4,4,3,5,5,3,5,3,2,3,3,4,

%T 4,2,3,3,3,4,3,4,5,4,5,4,4,4,4,3,3,5,6,5,6,4,3,5,5,3,5,3,2,3,3,3,4,4,

%U 5,4,4,3,2,3,4,3,5,3,3,4

%N Number of distinct nonzero Fibonacci numbers among the contiguous substrings of the binary digits of n.

%H Marko Riedel, <a href="/A272851/a272851.maple.txt">Maple program to compute sequence.</a>

%e a(53) = 6 because 53=(110101)_2 which contains (1)_2 = 1, (10)_2 = 2, (11)_2 = 3, (101)_2 = 5, (1101)_2 = 13 and (10101)_2 = 21. The one digit only contributes once.

%t s = Fibonacci@ Range@ 30; Table[Length@ Select[Union@ Flatten@ Function[k, Map[FromDigits[#, 2] & /@ Partition[k, #, 1] &, Range@ Length@ k]]@IntegerDigits[#, 2] &@ n, MemberQ[s, #] &], {n, 120}] (* _Michael De Vlieger_, May 08 2016 *)

%o (PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) ;

%o a(n) = {vb = binary(n); vf = []; for (i=1, #vb, for (j=1, #vb - i + 1, pvb = vector(j, k, vb[i+k-1]); f = subst(Pol(pvb), x, 2); if (f && isfib(f), vf = Set(concat(vf, f))););); #vf;} \\ _Michel Marcus_, May 08 2016

%Y Cf. A000045, A078822, A272852, A272886.

%K nonn,base

%O 1,2

%A _Marko Riedel_, May 07 2016