login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129158 Number of primitive non-Dyck factors in all skew Dyck paths of semilength n. 3
0, 0, 1, 5, 22, 96, 422, 1871, 8360, 37610, 170222, 774561, 3541487, 16263250, 74981226, 346957923, 1610847944, 7501970397, 35038158569, 164083453482, 770312822822, 3624741537711, 17093452878067, 80773023036909 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. A primitive non-Dyck factor is a subpath of the form UPD, P being a skew Dyck path with at least one L step, or of the form UPL, P being any nonempty skew Dyck path.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203

FORMULA

a(n) = Sum_{k=0,..,n} k*A129157(n,k).

a(n) = A128742(n) - A129156(n).

G.f.: (1-5*z+3*(1-z)*sqrt(1-4*z)-3*sqrt(1-6*z+5*z^2) - sqrt((1-4*z)*(1-6*z+5*z^2)))/(1+z+sqrt(1-6*z+5*z^2))^2.

a(n) ~ (3*sqrt(5)+5) * 5^(1+n) / (36*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014

EXAMPLE

a(2)=1 because in all skew Dyck paths of semilength 3, namely UDUD, UUDD and (UUDL), we have altogether 1 primitive non-Dyck factor (shown between parentheses).

MAPLE

G:=(1-5*z+3*(1-z)*sqrt(1-4*z)-3*sqrt(1-6*z+5*z^2)-sqrt((1-4*z)*(1-6*z+5*z^2)))/(1+z+sqrt(1-6*z+5*z^2))^2: Gser:=series(G, z=0, 32): seq(coeff(Gser, z, n), n=0..27);

MATHEMATICA

CoefficientList[Series[(1-5*x+3*(1-x)*Sqrt[1-4*x]-3*Sqrt[1-6*x+5*x^2]-Sqrt[(1-4*x)*(1-6*x+5*x^2)])/(1+x+Sqrt[1-6*x+5*x^2])^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)

PROG

(PARI) z='z+O('z^25); concat([0, 0], Vec((1-5*z+3*(1-z)*sqrt(1-4*z)-3*sqrt(1-6*z+5*z^2) - sqrt((1-4*z)*(1-6*z+5*z^2))) /(1+z+ sqrt(1-6*z+5*z^2) )^2)) \\ G. C. Greubel, Feb 09 2017

CROSSREFS

Cf. A129157, A129156, A128742.

Sequence in context: A083586 A200676 A297333 * A129164 A123347 A087439

Adjacent sequences:  A129155 A129156 A129157 * A129159 A129160 A129161

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Apr 02 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 16:20 EST 2020. Contains 338906 sequences. (Running on oeis4.)