The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200676 Expansion of -(3*x^2-5*x+1)/(x^3-3*x^2+5*x-1). 5
 1, 0, 0, 1, 5, 22, 96, 419, 1829, 7984, 34852, 152137, 664113, 2899006, 12654828, 55241235, 241140697, 1052634608, 4594992184, 20058197793, 87558647021, 382213633910, 1668450426280, 7283169876691, 31792711738525, 138782499488832, 605817532105276 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Peter Lawrence (see links) has posted a challenge to find a 3x3 integer matrix with "smallish" elements whose powers generate a sequence that is not in the OEIS. This sequence is one of the solutions found. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..500 D. Birmajer, J. B. Gil, M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 , example 14 Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2. Peter Lawrence et al., sequence challenge and follow-up messages on the SeqFan list, Nov 21 2011 Index entries for linear recurrences with constant coefficients, signature (5,-3,1) FORMULA G.f.: -(3*x^2-5*x+1)/(x^3-3*x^2+5*x-1). Term (1,1) in the 3x3 matrix [0,1,0; 0,0,1; 1,-3,5]^n. MAPLE a:= n-> (<<0|1|0>, <0|0|1>, <1|-3|5>>^n)[1, 1]: seq(a(n), n=0..30); MATHEMATICA CoefficientList[Series[-(3 x^2 - 5 x + 1)/(x^3 - 3 x^2 + 5 x - 1), {x, 0, 26}], x] (* Michael De Vlieger, Sep 04 2018 *) LinearRecurrence[{5, -3, 1}, {1, 0, 0}, 40] (* Harvey P. Dale, Aug 18 2021 *) CROSSREFS Cf. A200739. Sequence in context: A026888 A266430 A083586 * A297333 A129158 A342554 Adjacent sequences: A200673 A200674 A200675 * A200677 A200678 A200679 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Nov 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 12 10:47 EDT 2024. Contains 375850 sequences. (Running on oeis4.)