login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200676 Expansion of -(3*x^2-5*x+1)/(x^3-3*x^2+5*x-1). 5
1, 0, 0, 1, 5, 22, 96, 419, 1829, 7984, 34852, 152137, 664113, 2899006, 12654828, 55241235, 241140697, 1052634608, 4594992184, 20058197793, 87558647021, 382213633910, 1668450426280, 7283169876691, 31792711738525, 138782499488832, 605817532105276 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Peter Lawrence (see links) has posted a challenge to find a 3x3 integer matrix with "smallish" elements whose powers generate a sequence that is not in the OEIS. This sequence is one of the solutions found.
LINKS
D. Birmajer, J. B. Gil, M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 , example 14
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
Peter Lawrence et al., sequence challenge and follow-up messages on the SeqFan list, Nov 21 2011
FORMULA
G.f.: -(3*x^2-5*x+1)/(x^3-3*x^2+5*x-1).
Term (1,1) in the 3x3 matrix [0,1,0; 0,0,1; 1,-3,5]^n.
MAPLE
a:= n-> (<<0|1|0>, <0|0|1>, <1|-3|5>>^n)[1, 1]:
seq(a(n), n=0..30);
MATHEMATICA
CoefficientList[Series[-(3 x^2 - 5 x + 1)/(x^3 - 3 x^2 + 5 x - 1), {x, 0, 26}], x] (* Michael De Vlieger, Sep 04 2018 *)
LinearRecurrence[{5, -3, 1}, {1, 0, 0}, 40] (* Harvey P. Dale, Aug 18 2021 *)
CROSSREFS
Cf. A200739.
Sequence in context: A026888 A266430 A083586 * A297333 A129158 A342554
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Nov 21 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 10:47 EDT 2024. Contains 375850 sequences. (Running on oeis4.)