|
|
A200676
|
|
Expansion of -(3*x^2-5*x+1)/(x^3-3*x^2+5*x-1).
|
|
5
|
|
|
1, 0, 0, 1, 5, 22, 96, 419, 1829, 7984, 34852, 152137, 664113, 2899006, 12654828, 55241235, 241140697, 1052634608, 4594992184, 20058197793, 87558647021, 382213633910, 1668450426280, 7283169876691, 31792711738525, 138782499488832, 605817532105276
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Peter Lawrence (see links) has posted a challenge to find a 3x3 integer matrix with "smallish" elements whose powers generate a sequence that is not in the OEIS. This sequence is one of the solutions found.
|
|
LINKS
|
Peter Lawrence et al., sequence challenge and follow-up messages on the SeqFan list, Nov 21 2011
|
|
FORMULA
|
G.f.: -(3*x^2-5*x+1)/(x^3-3*x^2+5*x-1).
Term (1,1) in the 3x3 matrix [0,1,0; 0,0,1; 1,-3,5]^n.
|
|
MAPLE
|
a:= n-> (<<0|1|0>, <0|0|1>, <1|-3|5>>^n)[1, 1]:
seq(a(n), n=0..30);
|
|
MATHEMATICA
|
CoefficientList[Series[-(3 x^2 - 5 x + 1)/(x^3 - 3 x^2 + 5 x - 1), {x, 0, 26}], x] (* Michael De Vlieger, Sep 04 2018 *)
LinearRecurrence[{5, -3, 1}, {1, 0, 0}, 40] (* Harvey P. Dale, Aug 18 2021 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|