login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of skew Dyck paths of semilength n that have no primitive Dyck factors.
2

%I #12 Mar 21 2017 04:20:21

%S 1,0,1,4,15,59,241,1011,4326,18797,82685,367410,1646494,7432270,

%T 33761322,154213566,707882503,3263713148,15107319268,70182332975,

%U 327111450097,1529226524057,7168880978609,33693179852563

%N Number of skew Dyck paths of semilength n that have no primitive Dyck factors.

%C A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. A primitive Dyck factor is a subpath of the form UPD that starts on the x-axis, P being a Dyck path.

%H G. C. Greubel, <a href="/A129155/b129155.txt">Table of n, a(n) for n = 0..1000</a>

%H E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203

%F a(n) = A129154(n,0).

%F G.f.: (3-3*z-sqrt(1-6*z+5*z^2))/(2+z-sqrt(1-4*z)+sqrt(1-6*z+5*z^2)).

%F a(n) ~ (475 + 697*sqrt(5)) * 5^n / (3364*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Mar 20 2014

%e a(3)=4 because we have UUUDLD, UUDUDL, UUUDDL and UUUDLL.

%p G:=(3-3*z-sqrt(1-6*z+5*z^2))/(2+z-sqrt(1-4*z)+sqrt(1-6*z+5*z^2)): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..28);

%t CoefficientList[Series[(3-3*x-Sqrt[1-6*x+5*x^2])/(2+x-Sqrt[1-4*x]+Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)

%o (PARI) z='z+O('z^50); Vec((3-3*z-sqrt(1-6*z+5*z^2))/(2+z-sqrt(1-4*z)+sqrt(1-6*z+5*z^2))) \\ _G. C. Greubel_, Mar 20 2017

%Y Cf. A129154, A129157.

%K nonn

%O 0,4

%A _Emeric Deutsch_, Apr 02 2007