login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193161
E.g.f. A(x) satisfies: A(x/(1-x))/(1-x) = d/dx x*A(x).
6
1, 1, 3, 17, 152, 1944, 33404, 738212, 20316288, 679237248, 27050017152, 1262790237312, 68193683598336, 4212508572109824, 294822473048043264, 23184842446161993984, 2033884583922970558464, 197767395237549512097792, 21194678534706844531458048
OFFSET
0,3
COMMENTS
In Cellarosi and Sinai (2011) on page 257, m_k denotes a(k)/k!. - Michael Somos, Dec 28 2012
LINKS
F. Cellarosi and Ya. G. Sinai, The Möbius function and statistical mechanics, Bull. Math. Sci., 2011.
FORMULA
a(n) = (n-1)!* Sum_{k=0..n-1} binomial(n,k)*a(k)/k! for n>0 with a(0)=1.
a(n) = A193160(n+1)/(n+1).
E.g.f.: exp( Sum_{n>=1} x^n/(n*n!) ) = Sum_{n>=0} a(n)*x^n/n!^2.
a(n) = n! * A177208(n) / A177209(n) for n>=1 (see comment from Michael Somos).
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 152*x^4/4! + 1944*x^5/5! + ...
Related expansions:
A(x/(1-x))/(1-x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ...
A(x) + x*A'(x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ...
Also, a(n) appears in the expansion:
B(x) = 1 + x + 3*x^2/2!^2 + 17*x^3/3!^2 + 152*x^4/4!^2 + 1944*x^5/5!^2 + ...
where
log(B(x)) = x + x^2/(2*2!) + x^3/(3*3!) + x^4/(4*4!) + x^5/(5*5!) + ...
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-i)*binomial(n-1, i-1)/i, i=1..n))
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..25); # Alois P. Heinz, May 11 2016
MATHEMATICA
a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ Integrate[ (Exp[t] - 1)/t, {t, 0, x}]], {x, 0, n}]]]; (* Michael Somos, Dec 28 2012 *)
a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ ExpIntegralEi[x] - Log[x] - EulerGamma], {x, 0, n}]]]; (* Michael Somos, Dec 28 2012 *)
Table[Sum[BellY[n, k, 1/Range[n]], {k, 0, n}] n!, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
PROG
(PARI) {a(n)=local(A=1+x, B); for(i=1, n, B=subst(A, x, x/(1-x+x*O(x^n)))/(1-x); A=1+intformal((B-A)/x)); n!*polcoeff(A, n)}
(PARI) {a(n)=if(n<0, 0, if(n==0, 1, (n-1)!*sum(k=0, n-1, binomial(n, k)*a(k)/k!)))}
(PARI) {a(n)=n!^2*polcoeff(exp(sum(m=1, n, x^m/(m*m!))+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 16 2011
STATUS
approved