login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A355720
Expansion of e.g.f. exp( x/(2 - exp(x)) ).
2
1, 1, 3, 16, 113, 986, 10237, 123096, 1680737, 25668766, 433329461, 8009178596, 160802065393, 3483842906610, 80992799730221, 2010720004254856, 53081510001375041, 1484613248976841958, 43846812123456425221, 1363477059263944382604
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A052882(k) * binomial(n-1,k-1) * a(n-k).
a(n) ~ n^(n - 1/4) * exp(sqrt(2*n) - 1/4 - n) / (sqrt(2) * log(2)^n). - Vaclav Kotesovec, Jul 15 2022
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(2-exp(x)))))
(PARI) a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*a000670(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 15 2022
STATUS
approved