OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A052882(k) * binomial(n-1,k-1) * a(n-k).
a(n) ~ n^(n - 1/4) * exp(sqrt(2*n) - 1/4 - n) / (sqrt(2) * log(2)^n). - Vaclav Kotesovec, Jul 15 2022
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(2-exp(x)))))
(PARI) a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*a000670(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 15 2022
STATUS
approved