login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305133
E.g.f.: (1-x) / (exp(-x) - x).
1
1, 1, 3, 16, 113, 996, 10537, 130054, 1834513, 29111896, 513307601, 9955832514, 210652214665, 4828548335092, 119193293536969, 3152465052989326, 88935973854834593, 2665836978234855984, 84608363388300429601, 2834484567764492239354, 99956558270008377397081, 3701159405682998540166796, 143571313108884280622221913, 5822409005523822986360056326
OFFSET
0,3
FORMULA
E.g.f. A(x) satisfies: [x^n] exp((n+1)*x) * A(x) = [x^(n+1)] exp(n*x) * A(x) for n >= 0.
a(n) ~ n! * (1 - LambertW(1)) / ((1 + LambertW(1)) * LambertW(1)^(n+1)). - Vaclav Kotesovec, Jun 16 2018
a(n) = 1 + n * Sum_{k=1..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Aug 08 2020
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 113*x^4/4! + 996*x^5/5! + 10537*x^6/6! + 130054*x^7/7! + 1834513*x^8/8! + 29111896*x^9/9! + ...
RELATED TABLE.
The table of coefficients of x^k in exp(n*x) * A(x) begins:
n=0: [1, (1), 3/2, 8/3, 113/24, 83/10, 10537/720, 65027/2520, ...];
n=1: [(1), 2, (3), 29/6, 25/3, 1757/120, 929/36, 45863/1008, ...];
n=2: [1, (3), 11/2, (9), 361/24, 1559/60, 729/16, 101107/1260, ...];
n=3: [1, 4, (9), 97/6, (82/3), 1863/40, 3637/45, 714319/5040, ...];
n=4: [1, 5, 27/2, (82/3), 1169/24, (251/3), 103801/720, 632897/2520, ...];
n=5: [1, 6, 19, 87/2, (251/3), 17821/120, (5147/20), 2250499/5040, ...];
n=6: [1, 7, 51/2, 197/3, 3305/24, (5147/20), 65633/144, (14293/18), ...];
n=7: [1, 8, 33, 569/6, 652/3, 51893/120, (14293/18), 7078303/5040, ...]; ...
in which terms along the diagonals (enclosed in parenthesis) are equal:
[x^n] exp((n+1)*x) * A(x) = [x^(n+1)] exp(n*x) * A(x) for n >= 0.
MATHEMATICA
With[{nn=30}, CoefficientList[Series[(1-x)/(Exp[-x]-x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 15 2022 *)
PROG
(PARI) {a(n) = n!*polcoeff( (1-x) / (exp(-x +x*O(x^n)) - x), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A332024 A124537 A355720 * A368510 A074523 A329113
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 15 2018
STATUS
approved