login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

O.g.f. A(x) satisfies: A(x) = 1 + Integral (x/A(x))' / (x/A(x)^4)' dx.
9

%I #23 Oct 15 2020 13:26:33

%S 1,1,3,16,118,1050,10509,113892,1307043,15661024,194075098,2470848492,

%T 32161635070,426440290744,5743575712131,78405535427220,

%U 1082876597440146,15109514661352482,212736976140479073,3019422091269739704,43164665664066028062,621078277521084894978,8989001884449529431990,130795752983608734209604,1912460927749734257739153,28088780052768915388505436,414247711043291214286003410

%N O.g.f. A(x) satisfies: A(x) = 1 + Integral (x/A(x))' / (x/A(x)^4)' dx.

%H Paul D. Hanna, <a href="/A302701/b302701.txt">Table of n, a(n) for n = 0..400</a>

%F O.g.f. A(x) satisfies:

%F (1) A(x) = 1 + Integral (x/A(x))' / (x/A(x)^4)' dx.

%F (2) A(x) = 1 + Integral A(x)^3 * (A(x) - x*A'(x)) / (A(x) - 4*x*A'(x)) dx.

%F (3) A(x) = 1 + Integral A(x) * (1 + x*A(x)^2 - sqrt(1 - 14*x*A(x)^2 + x^2*A(x)^4) )/(8*x) dx.

%F (4) 0 = A(x)^4 - A(x)*(1 + x*A(x)^2)*A'(x) + 4*x*A'(x)^2.

%F a(n) ~ 3^(2/3) * (1240209 - 716035*sqrt(3))^(1/6) * 2^((4*n - 5)/3) * (3 + 2*sqrt(3))^n / (sqrt(Pi) * n^(5/2)). - _Vaclav Kotesovec_, Oct 14 2020

%e G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 118*x^4 + 1050*x^5 + 10509*x^6 + 113892*x^7 + 1307043*x^8 + 15661024*x^9 + 194075098*x^10 + ...

%e RELATED SERIES.

%e (x/A(x))' / (x/A(x)^4)' = 1 + 6*x + 48*x^2 + 472*x^3 + 5250*x^4 + 63054*x^5 + 797244*x^6 + 10456344*x^7 + 140949216*x^8 + 1940750980*x^9 + ...

%e which equals A'(x).

%e The logarithmic derivative of the g.f. begins:

%e A'(x)/A(x) = 1 + 5*x + 40*x^2 + 401*x^3 + 4531*x^4 + 55040*x^5 + 701716*x^6 + 9261257*x^7 + 125449600*x^8 + 1734071855*x^9 + 24362189248*x^10 + ...

%e which equals (1 + x*A(x)^2 - sqrt(1 - 14*x*A(x)^2 + x^2*A(x)^4))/(8*x).

%t nmax = 30; A = 1; Do[A = 1 + Integrate[D[x/A, x]/D[x/A^4, x], x] + O[x]^nmax, nmax]; CoefficientList[A, x] (* _Vaclav Kotesovec_, Oct 15 2020 *)

%o (PARI) {a(n) = my(A=1); for(i=1, n, A = 1 + intformal( (x/A)'/(x/A^4 +x*O(x^n))' ); ); polcoeff(A, n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A302704, A302705, A303064, A338163, A338187, A338188, A338193, A338194.

%K nonn,nice

%O 0,3

%A _Paul D. Hanna_, Apr 19 2018