login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302705 O.g.f. A(x) satisfies:  A(x) = 1 + Integral (x*A(x)^4)' / (x*A(x))' dx. 4
1, 1, 3, 11, 43, 171, 677, 2637, 10035, 37171, 134009, 472785, 1655845, 5910373, 22254507, 90625475, 396822579, 1803795507, 8151776201, 35314777505, 142395796689, 518352934225, 1625522953935, 3944383216263, 4604242439037, -17114536692099, -114353748666873, -52384917067153, 4112292989447275, 42810794269242411, 290607272326013813 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Note: if F(x) = 1 + Integral (x*F(x)^3)' / (x*F(x))' dx, then F(x) does not consist entirely of integer coefficients in its power series expansion.

Given G(x) = 1 + Integral (x*G(x)^p)' / (x*G(x)^q)' dx, for what fixed integers p and q is G(x) an integer power series?

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..520

FORMULA

O.g.f. A(x) satisfies:

(1) A(x) = 1 + Integral (x*A(x)^4)' / (x*A(x))' dx.

(2) A(x) = 1 + Integral A(x)^3 * (A(x) + 4*x*A'(x)) / (A(x) + x*A'(x)) dx.

(3) A(x) = 1 + Integral A(x) * ( sqrt(1 - 4*x*A(x)^2 + 16*x^2*A(x)^4) - 1 + 4*x*A(x)^2 ) / (2*x) dx.

(4) 0 = A(x)^4 - A(x)*(1 - 4*x*A(x)^2)*A'(x) - x*A'(x)^2.

EXAMPLE

O.g.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 43*x^4 + 171*x^5 + 677*x^6 + 2637*x^7 + 10035*x^8 + 37171*x^9 + 134009*x^10 + 472785*x^11 + 1655845*x^12 + ...

RELATED SERIES.

(x*A(x)^4)' / (x*A(x))' = 1 + 6*x + 33*x^2 + 172*x^3 + 855*x^4 + 4062*x^5 + 18459*x^6 + 80280*x^7 + 334539*x^8 + ... + (n+1)*a(n+1)*x^n + ...

which equals A'(x).

The logarithmic derivative of the g.f. begins:

A'(x)/A(x) = 1 + 5*x + 25*x^2 + 121*x^3 + 561*x^4 + 2477*x^5 + 10361*x^6 + 40817*x^7 + 150433*x^8 + 515605*x^9 + 1646041*x^10 + ...

which equals (sqrt(1 - 4*x*A(x)^2 + 16*x^2*A(x)^4) - 1 + 4*x*A(x)^2) / (2*x).

PROG

(PARI) {a(n) = my(A=1); for(i=1, n, A = A = 1 + intformal( (x*A^4)'/(x*A +x*O(x^n))' ); ); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A302701, A302704, A303064.

Sequence in context: A140803 A246758 A084643 * A007583 A026671 A026876

Adjacent sequences:  A302702 A302703 A302704 * A302706 A302707 A302708

KEYWORD

sign

AUTHOR

Paul D. Hanna, Apr 15 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 05:29 EST 2018. Contains 317333 sequences. (Running on oeis4.)