The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145349 G.f. satisfies: A(x/A(x)^3) = 1 + x*A(x). 5
 1, 1, 4, 34, 416, 6319, 111124, 2177346, 46440184, 1061938195, 25762345804, 658072997702, 17600573291712, 490770914734054, 14219015899154068, 426904437068035200, 13252855203929697200, 424634035832800883743, 14020984603588221319072, 476460483567807053745450 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x); thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1. LINKS Table of n, a(n) for n=0..19. FORMULA G.f.: A(x) = 1 + x*G(x)^4 where G(x) = A(x*G(x)^3) and A(x) = G(x/A(x)^3). a(n) = [x^(n-1)] 4*A(x)^(3*n+1)/(3*n+1) for n>=1 with a(0)=1; i.e., a(n) equals the coefficient of x^(n-1) in 4*A(x)^(3*n+1)/(3*n+1) for n>=1 (see comment). EXAMPLE G.f.: A(x) = 1 + x + 4*x^2 + 34*x^3 + 416*x^4 + 6319*x^5 +... A(x)^3 = 1 + 3*x + 15*x^2 + 127*x^3 + 1512*x^4 + 22419*x^5 +... A(x/A(x)^3) = 1 + x + x^2 + 4*x^3 + 34*x^4 + 416*x^5 + 6319*x^6 +... A(x) = 1 + x*G(x)^4 where G(x) = A(x*G(x)^3): G(x) = 1 + x + 7*x^2 + 82*x^3 + 1239*x^4 + 21942*x^5 + 434746*x^6 +... G(x)^3 = 1 + 3*x + 24*x^2 + 289*x^3 + 4377*x^4 + 77097*x^5 +... To illustrate the formula a(n) = [x^(n-1)] 4*A(x)^(3*n+1)/(3*n+1), form a table of coefficients in A(x)^(3*n+1) as follows: A^4: [(1), 4, 22, 188, 2217, 32516, 555972, ...]; A^7: [1, (7), 49, 441, 5131, 73248, 1220457, ...]; A^10: [1, 10, (85), 820, 9590, 134482, 2191060, ...]; A^13: [1, 13, 130, (1352), 16107, 223886, 3582072, ...]; A^16: [1, 16, 184, 2064, (25276), 351072, 5541912, ...]; A^19: [1, 19, 247, 2983, 37772, (527839), 8260174, ...]; ... in which the main diagonal forms the initial terms of this sequence: [4/4*(1), 4/7*(7), 4/10*(85), 4/13*(1352), 4/16*(25276), 4/19*(527839), ...]. ALTERNATE GENERATING METHOD. This sequence forms column zero in the follow array. Let A denote this sequence, and A^3 the self-convolution cube of A. Start in row zero with this sequence, A, after prepending an initial '1', then repeat: drop the initial term and perform convolution with A^3 and the remaining terms in a given row to obtain the next row: [1, 1, 1, 4, 34, 416, 6319, 111124, 2177346, 46440184, 1061938195, ...]; [1, 4, 22, 188, 2217, 32516, 555972, 10655628, 223313220, 5034249556, ...]; [4, 34, 314, 3619, 50829, 833591, 15417781, 313704516, 6900409869, ...]; [34, 416, 5071, 70714, 1131649, 20377616, 404581945, 8712077584, ...]; [416, 6319, 92167, 1472688, 26106282, 508663862, 10756749655, ...]; [6319, 111124, 1843974, 32709364, 630332565, 13142389012, 294045605744, ...]; [111124, 2177346, 39908146, 770233015, 15926231353, 352361228127, ...]; [46440184, 1061938195, 22576531219, 497127293708, 11532665230502, ...]; ... PROG (PARI) {a(n)=local(A=1+x, G); for(i=0, n, G=(serreverse(x/(A+x*O(x^n))^3)/x)^(1/3); A=1+x*G^4); polcoeff(A, n)} (PARI) /* This sequence is generated when k=3, m=1: A(x/A(x)^k) = 1 + x*A(x)^m */ {a(n, k=3, m=1)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)+x*O(x^n)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))} for(n=0, 20, print1(a(n), ", ")) (PARI) /* Prints terms 0..30 */ {A=[1]; for(m=1, 30, B=A; for(i=1, m-1, C=Vec(Ser(A)^3*Ser(B)); B=vector(#C-1, n, C[n+1]) ); A=concat(A, 0); A[#A]=B[1] ); A} \\ Paul D. Hanna, Jan 10 2016 CROSSREFS Cf. variants: A002293, A145347, A145348, A120974, A145345, A145350, A147664. Sequence in context: A207570 A158839 A236964 * A309170 A338163 A052630 Adjacent sequences: A145346 A145347 A145348 * A145350 A145351 A145352 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 11 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 21:37 EST 2023. Contains 367662 sequences. (Running on oeis4.)