The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145351 Prime-indexed composites k such that lpf(k) + gpf(k) is a prime. 1
 6, 10, 20, 22, 30, 44, 54, 58, 66, 82, 96, 108, 120, 136, 142, 144, 204, 232, 324, 330, 340, 352, 384, 464, 492, 544, 596, 616, 704, 738, 750, 792, 870, 894, 918, 960, 990, 1062, 1234, 1312, 1318, 1326, 1498, 1534, 1540, 1566, 1576, 1632, 1694, 1700, 1722 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 EXAMPLE 6 is a term because it is the 2nd composite number, 6=2*3, and 2+3=5 is prime; 10 is a term because it is the 5th composite number, 10=2*5, and 2+5=7 is prime; 22 is a term because it is the 13th composite number, 22=2*11, and 2+11=13 is prime; 44 is a term because it is the 29th composite number, 44=2*2*11, and 2+11=13 is prime. MAPLE A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc: A006530 := proc(n) numtheory[factorset](n) ; max(op(%)) ; end proc: A002808 := proc(n) if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do: end if; end proc: A065858 := proc(n) A002808(ithprime(n)) ; end proc: A145351 := proc(n) c := A065858(n) ; if isprime(A020639(c) + A006530(c)) then printf("%d, ", c) ; end if; end proc: seq(A145351(n), n=1..400) ; # R. J. Mathar, May 01 2010 MATHEMATICA pfiQ[n_]:=Module[{f=FactorInteger[n]}, PrimeQ[f[[1, 1]]+f[[-1, 1]]]]; Module[ {nn=2000, c}, c=Select[ Range[nn], CompositeQ]; Select[ Table[ Take[c, {n}][[1]], {n, Prime[Range[PrimePi[Length[c]]]]}], pfiQ]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 18 2019 *) CROSSREFS Cf. A000040, A002808, A020639 (lpf), A006530 (gpf). Sequence in context: A095985 A270306 A327410 * A227874 A015783 A356055 Adjacent sequences: A145348 A145349 A145350 * A145352 A145353 A145354 KEYWORD nonn AUTHOR Juri-Stepan Gerasimov, Jan 04 2009 EXTENSIONS Corrected (inserted 20 from n=5, 30 from n=8, removed 200) and extended beyond 204 by R. J. Mathar, May 01 2010 Edited by Jon E. Schoenfield, Feb 07 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 19:06 EDT 2024. Contains 372758 sequences. (Running on oeis4.)