login
A356055
Intersection of A001952 and A137804.
4
6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, 81, 85, 92, 102, 119, 129, 136, 146, 150, 157, 163, 167, 177, 180, 184, 194, 198, 201, 211, 215, 221, 228, 232, 238, 242, 249, 259, 276, 286, 293, 297, 303, 307, 314, 320, 324, 341, 351, 355, 358, 368, 372, 378, 385
OFFSET
1,1
COMMENTS
This is the fourth of four sequences, u^v, u^v', u'^v, u'^v', that partition the positive integers. See A356052.
EXAMPLE
(1) u ^ v = (1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, ...) = A356052
(2) u ^ v' = (2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, ...) = A356053
(3) u' ^ v = (3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, ...) = A356054
(4) u' ^ v' = (6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, ...) = A356055
MATHEMATICA
z = 250;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Intersection[u, v] (* A356052 *)
Intersection[u, v1] (* A356053 *)
Intersection[u1, v] (* A356054 *)
Intersection[u1, v1] (* A356055 *)
CROSSREFS
Cf. A001951, A001952, A136803, A137804, A356052, A356053, A356055, A356056 (composites instead of intersections), A356081.
Sequence in context: A145351 A227874 A015783 * A300020 A068017 A270544
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 26 2022
STATUS
approved