login
A356053
Intersection of A001951 and A137804.
4
2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, 39, 41, 43, 46, 48, 50, 52, 56, 60, 62, 67, 69, 73, 77, 79, 83, 87, 90, 94, 96, 98, 100, 104, 106, 108, 110, 113, 115, 117, 121, 123, 125, 127, 131, 134, 138, 140, 142, 144, 148, 152, 154, 159, 161, 165, 169, 171
OFFSET
1,1
COMMENTS
This is the second of four sequences, u^v, u^v', u'^v, u'^v', that partition the positive integers. See A356052.
EXAMPLE
(1) u ^ v = (1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, ...) = A356052
(2) u ^ v' = (2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, ...) = A356053
(3) u' ^ v = (3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, ...) = A356054
(4) u' ^ v' = (6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, ...) = A356055
MATHEMATICA
z = 250;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Intersection[u, v] (* A356052 *)
Intersection[u, v1] (* A356053 *)
Intersection[u1, v] (* A356054 *)
Intersection[u1, v1] (* A356055 *)
CROSSREFS
Cf. A001951, A001952, A136803, A137804, A356052, A356054, A356055, A356056 (composites instead of intersections).
Sequence in context: A361833 A048314 A349079 * A118286 A211823 A024911
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 26 2022
STATUS
approved