login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207570
G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^(3*k-2) - 1).
3
1, 1, 4, 34, 410, 6455, 125251, 2888305, 77157780, 2342972405, 79701049425, 3002132647515, 124039845584382, 5577660227565634, 271162541308698623, 14172237715785139175, 792418822364402364530, 47198077739119663907870, 2983413619934353599892285
OFFSET
0,3
COMMENTS
Compare g.f. to: Sum_{n>=0} Product_{k=1..n} ((1+x)^k - 1), which is the g.f. of A179525.
LINKS
Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
FORMULA
a(n) ~ GAMMA(2/3) * 2^(2*n-1/3) * 3^(2*n+5/6) * n^(n-1/6) / (exp(n+Pi^2/72) * Pi^(2*n+7/6)). - Vaclav Kotesovec, May 06 2014
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 34*x^3 + 410*x^4 + 6455*x^5 + 125251*x^6 +...
such that, by definition,
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^4-1) + ((1+x)-1)*((1+x)^4-1)*((1+x)^7-1) + ((1+x)-1)*((1+x)^4-1)*((1+x)^7-1)*((1+x)^10-1) +...
MATHEMATICA
Join[{1}, Rest[With[{nn=20}, CoefficientList[Series[Sum[Product[ (1+x)^(3k-2)-1, {k, n}], {n, nn}], {x, 0, nn}], x]]]] (* Harvey P. Dale, Aug 20 2012 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, (1+x)^(3*k-2)-1) +x*O(x^n)), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 18 2012
STATUS
approved