OFFSET
0,3
COMMENTS
Compare g.f. to: Sum_{n>=0} Product_{k=1..n} ((1+x)^k - 1), which is the g.f. of A179525.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..200
Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
FORMULA
a(n) ~ GAMMA(2/3) * 2^(2*n-1/3) * 3^(2*n+5/6) * n^(n-1/6) / (exp(n+Pi^2/72) * Pi^(2*n+7/6)). - Vaclav Kotesovec, May 06 2014
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 34*x^3 + 410*x^4 + 6455*x^5 + 125251*x^6 +...
such that, by definition,
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^4-1) + ((1+x)-1)*((1+x)^4-1)*((1+x)^7-1) + ((1+x)-1)*((1+x)^4-1)*((1+x)^7-1)*((1+x)^10-1) +...
MATHEMATICA
Join[{1}, Rest[With[{nn=20}, CoefficientList[Series[Sum[Product[ (1+x)^(3k-2)-1, {k, n}], {n, nn}], {x, 0, nn}], x]]]] (* Harvey P. Dale, Aug 20 2012 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, (1+x)^(3*k-2)-1) +x*O(x^n)), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 18 2012
STATUS
approved