The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145347 G.f. satisfies: A(x/A(x)) = 1 + x*A(x)^3. 2
 1, 1, 4, 26, 220, 2203, 24836, 306104, 4047988, 56713521, 834286612, 12801754120, 203889888832, 3357619794321, 56999146850380, 995081586539016, 17830012791062632, 327376145842252333, 6151225530281186372, 118142009771446643592, 2317165307900630229384 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x); thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1. LINKS Table of n, a(n) for n=0..20. FORMULA G.f.: A(x) = 1 + x*G(x)^4 where G(x) = A(x*G(x)) and A(x) = G(x/A(x)). a(n) = [x^(n-1)] 4*A(x)^(n+3)/(n+3) for n>=1 with a(0)=1; i.e., a(n) equals the coefficient of x^(n-1) in 4*A(x)^(n+3)/(n+3) for n>=1 (see comment). EXAMPLE G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 220*x^4 + 2203*x^5 + 24836*x^6 +... A(x)^3 = 1 + 3*x + 15*x^2 + 103*x^3 + 876*x^4 + 8679*x^5 + 96382*x^6 +... A(x/A(x)) = 1 + x + 3*x^2 + 15*x^3 + 103*x^4 + 876*x^5 + 8679*x^6 +... A(x) = 1 + x*G(x)^4 where G(x) = A(x*G(x)): G(x) = 1 + x + 5*x^2 + 39*x^3 + 381*x^4 + 4284*x^5 + 53163*x^6 +... To illustrate the formula a(n) = [x^(n-1)] 4*A(x)^(n+3)/(n+3), form a table of coefficients in A(x)^(n+3) as follows: A^4: [(1), 4, 22, 156, 1337, 13220, 145988, 1759876, ...]; A^5: [1, (5), 30, 220, 1905, 18836, 207100, 2481740, ...]; A^6: [1, 6, (39), 296, 2595, 25704, 281727, 3358488, ...]; A^7: [1, 7, 49, (385), 3423, 34020, 372141, 4416658, ...]; A^8: [1, 8, 60, 488, (4406), 44000, 480900, 5686480, ...]; A^9: [1, 9, 72, 606, 5562, (55881), 610872, 7202268, ...]; ... in which the main diagonal forms the initial terms of this sequence: [4/4*(1), 4/5*(5), 4/6*(39), 4/7*(385), 4/8*(4406), 4/9*(55881), ...]. PROG (PARI) {a(n)=local(F=1+x); for(i=0, n, G=serreverse(x/(F+x*O(x^n))^1)/x; F=1+x*G^4); polcoeff(F, n)} (PARI) /* This sequence is generated when k=1, m=3: A(x/A(x)^k) = 1 + x*A(x)^m */ {a(n, k=1, m=3)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)+x*O(x^n)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A145348, A145350, A147664, A120972. Sequence in context: A364973 A120971 A187826 * A219780 A259902 A089816 Adjacent sequences: A145344 A145345 A145346 * A145348 A145349 A145350 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 09 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 08:33 EST 2023. Contains 367558 sequences. (Running on oeis4.)