login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219780
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^4.
1
1, 4, 26, 220, 2243, 26484, 353380, 5239276, 85243413, 1507394980, 28749072350, 587631913212, 12804803195383, 296121904536148, 7239552829750920, 186477285179206924, 5045665971430927721, 143034320139018008196, 4238027733918053839714, 130967841736577170487068
OFFSET
0,2
COMMENTS
Compare to: 1 = Sum_{n>=0} n! * x^n * (1 - (n+1)*x).
Compare to: 1 = Sum_{n>=0} A002720(n) * x^n * (1 - (n+1)*x)^2, where A002720(n) is the number of partial permutations of an n-set.
FORMULA
E.g.f.: A(x) = 1 + 4*x + 26*x^2/2! + 220*x^3/3! + 2243*x^4/4! + 26484*x^5/5! +...
By definition, the terms satisfy:
1 = (1-x)^4 + 4*x*(1-2*x)^4 + 26*x^2*(1-3*x)^4 + 220*x^3*(1-4*x)^4 + 2243*x^4*(1-5*x)^4 + 26484*x^5*(1-6*x)^4 + 353380*x^6*(1-7*x)^4 +...
PROG
(PARI) {a(n)=polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^4), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A120971 A187826 A145347 * A259902 A089816 A371539
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2012
STATUS
approved