login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^4.
1

%I #5 Nov 27 2012 07:12:57

%S 1,4,26,220,2243,26484,353380,5239276,85243413,1507394980,28749072350,

%T 587631913212,12804803195383,296121904536148,7239552829750920,

%U 186477285179206924,5045665971430927721,143034320139018008196,4238027733918053839714,130967841736577170487068

%N G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^4.

%C Compare to: 1 = Sum_{n>=0} n! * x^n * (1 - (n+1)*x).

%C Compare to: 1 = Sum_{n>=0} A002720(n) * x^n * (1 - (n+1)*x)^2, where A002720(n) is the number of partial permutations of an n-set.

%F E.g.f.: A(x) = 1 + 4*x + 26*x^2/2! + 220*x^3/3! + 2243*x^4/4! + 26484*x^5/5! +...

%F By definition, the terms satisfy:

%F 1 = (1-x)^4 + 4*x*(1-2*x)^4 + 26*x^2*(1-3*x)^4 + 220*x^3*(1-4*x)^4 + 2243*x^4*(1-5*x)^4 + 26484*x^5*(1-6*x)^4 + 353380*x^6*(1-7*x)^4 +...

%o (PARI) {a(n)=polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^4), n)}

%o for(n=0,25,print1(a(n),", "))

%Y Cf. A002720, A219779.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 27 2012